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Abstract:  Frequent substructure discovery from a collection of semi-structured objects 
can serve for storage, browsing, querying, indexing and classification of semi-structured 
documents. This paper examines the problem of discovering frequent substructures from a 
collection of hierarchical semi-structured objects of the same type. The use of wildcard is 
an important aspect of substructure discovery from semi-structured data due to the 
irregularity and lack of fixed structure of such data. This paper proposes a more general 
and powerful wildcard mechanism, which allows us to find more complex and interesting 
substructures than existing techniques. Furthermore, the complexity of structural 
information of semi-structured data and the usage of wildcard make the existing frequent set 
mining algorithms inapplicable for substructure discovery. In this work, we adopt a vertical 
format for the storage of semi-structured objects, and adapt a frequent set mining algorithm 
for our purpose. The application of our approach to real-life data shows that it is very 
effective.   

Keywords: frequent substructures mining, hierarchical semi-structured data, wildcard, web 
mining. 

1 Introduction 

Semi-structured data arise in many application areas. The emergence of XML further 
increases the availability of semi-structured data. See [1] for an excellent survey on semi-
structured data. Figure 1 shows a segment of a semi-structured movie object, “God Father” 
from http://us.imdb.com/ Title?0068646. The root node represents the movie object and the 
other nodes represent its sub-objects. The links and their labels denote the sub-object 
references and their roles. The structure or schema of objects refers to the hierarchy of 
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references and roles. Note that the sub-object references of writer are omitted in Figure 1 
because they are the same as those of director.  
 Semi-structured data by definition are characterized by the lack of rigid and fixed schema 
in advance. For example, some movie objects may not have cast label but only have leading 
actor label; some sub-objects may be missing in some movie objects, etc. Despite the 
structural irregularity, semi-structured data typically do possess some structures [11]. Such 
structures implicit in semi-structured data can serve the following purposes: optimizing query 
evaluation, obtaining general information contents, facilitating the integration of data from 
several information sources, improving storage, assisting in building indexes and views, and 
making it possible for structure-based document clustering [3][24].    

Schema (or substructure) discovery for semi-structured data is a rather new and 
dynamic topic and by necessity incomplete [3]. The focus of schema discovery evolves 
with the progress of the research on semi-structured data. The system Lorel [2] and 
Tsimmis adopt OEM graphs as their semi-structured model and propose DataGuides [15] 
to explore and to represent the implicit schema of semi-structured data. [8][10][17] 
discover schema by classifying or clustering objects according to their structures. 
  

 

 

         

 

 

 

 

 

 

 

 

Figure 1: A segment of “God Father ” movie object 
 Recently, some researchers investigated the application of relational
semi-structured data [26]. STORED [14] discovers the schema of semi-struc
transforms it into relational schema. The part of data that fits the relational sc
in relational tables and the other part is stored with OEM graphs. [21] sto
entirely in relational tables with the assumption that the XML data conform
One premise of the application of relational technology to semi-structured da
structured objects of the same type usually have similar structures. 
 The key in representing semi-structured data with relational tables is t
typical structures implicit in the data. Unfortunately, the hierarchical stru
structured data makes the problem rather complex. Wildcard is widely 
structured data query because of the data irregularity. Many interesting que
structured data necessarily involve wildcards [1] and the conjunction of p
with wildcard can give the full power of path expression in query [2][3]. The
wildcard in structural discovery is the same as that in data query. Howe
wildcard further complicates the problem of schema discovery.  
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 In XML, although DTDs (Document Type Definitions) can be used to restrict what 
attributes and elements that XML documents can contain, attributes and elements included 
in DTD need not actually appear in the document. DTDs cannot specify restriction on the 
types of elements referenced by IDREF attributes [26]. Thus, frequent structures of XML 
documents may not be inferred from their DTDs.  
 [24] proposes a modified frequent set mining algorithm to discover frequent 
substructures from a collection of semi-structured data represented with OEM graphs. [14] 
adopts the approach of [24] to find the frequent structures from XML data. Because of the 
definition and usage of wildcard, [24] uses a tree match algorithm to count supports of 
candidate substructures. The efficiency of tree matching algorithm becomes worse and 
even prohibitive as the number of wildcards in candidate substructures increases.  
 Moreover, the usage of wildcard in 
[24] cannot fully explore the structure of 
irregular semi-structured data. For 
example, both movie objects in Figure 2a) 
contain the substructure as shown in 
Figure 2b). Given the task of finding 
substructures that occur in both movie 
objects in Figure 2a), [24] cannot discover 
substructures in 2b). The reasons are as 
follows: 

 a) two movie objects        b) a substructure 
Figure 2 some movie objects and their substructures 

 A wildcard (denoted by ?) in [24] matches only one label on a label path. With such 
wildcards, if the wildcard of 2b) is composed of two “?”, 2b) is matched with the left 
movie object of Figure 2a); if the wildcard of 2b) is composed of only one “?”, 2b) is 
matched with the right movie object of Figure 2a). In both cases, 2b) can only occur in one 
movie object. Therefore, [24] cannot find 2b). [24] cannot discover typical substructures 
that exist in the lower part or the middle part of semi-structured objects when the upper part 
of objects has different number of labels.  
 The introduction of wildcard in [24] may cause over-generation of paths with wildcard (to 
form substructures) because it generates paths with wildcard by replacing one or several non-
terminal labels on each label path with the corresponding number of “?”. This will generate a 
large number of useless paths with wildcard, and increase the search space drastically.  
 Our goal in the paper is to discover frequent structures that occur in a minimum number 
of a collection of semi-structured objects specified by the user. The collection of objects 
usually contain the same type of information and are similarly structured. Examples of such 
kind of semi-structured objects are movies, universities, census data, online merchandise, 
etc. In this sense, our work is related to those of [13][24]. However, our approach differs in 
important ways. The main characteristics of our approach are as follows: 
 1) With a more powerful wildcard mechanism, our approach can overcome the 
shortcomings of [24] as mentioned above, thus exploring the structure of irregular semi-
structured data more effectively than previous techniques. E.g. our approach can discover 
substructures in Figure 2.  
 2) We propose a new approach to compute the frequencies of substructures (with 
wildcard or not) in a collection of semi-structured data. The approach is characterized by 
the new features: semi-structured objects are represented with paths and corresponding 
tidlists in database; the database is expanded with another two components---paths with 
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wildcard and a category of substructures; a special tidlist format for the two components is 
adopted. Therefore, Our approach avoids expensive computation of tree matching.  
 3) We propose an effective way to introduce path with wildcard that avoids over-
generation of paths with wildcard (used to construct candidate substructures). 
 4) We propose an adapted mining algorithm to meet the new requirements of 
substructure discovery problem: the hierarchical structure of semi-structured objects, the 
usage of wildcard and the special tidlist format used in our approaches. 
 The algorithms for discovering frequent itemsets from vertical format databases, such 
as [9][16][19][20][27], are related to our approach. These algorithms, however, cannot be 
directly applied to objects having structures in the form of labeled hierarchical sub-object 
references, much less to discover substructures with wildcards. The technique in [22] on 
pattern discovery from semi-structured data cannot be used either as it does not consider 
the hierarchical structure of semi-structured objects. In addition, our search space includes 
substructures containing wildcards, which [22] does not handle. Another related work is 
[12] that accurately estimates the number of matches of a small tree in a large node-labeled 
tree. [12] does not deal with wildcards. 
 The paper is organized as follows: Section 2 defines our discovery problem. Section 3 
presents the proposed algorithm. Section 4 evaluates the efficiency of algorithm and 
applies our algorithm to real-life semi-structured datasets. Section 5 concludes the paper. 

2  Problem Description 
Section 2.1 introduces the scheme for representing transaction objects for our discovery 
problem. Another two components are presented in Section 2.2 to expand database. Section 
2.3 discusses how to construct substructure by combining components in database and 
define path-set to represent substructures (as well as transaction objects) and weaker than 
relationship to compare the informativeness of path-sets. Section 2.4 defines our discovery 
problem and gives several examples. 

2.1 Representing transaction objects 
Our objective in this work is to discover structural similarity of a collection of semi-
structured objects. These objects are also called transaction objects. Each object can be an 
acyclic or cyclic graph. A cyclic graph can be transformed into an acyclic graph and an 
acyclic graph can be equally represented with a tree through replicating shared sub-objects 
[24]. Assume that the transaction set T consists of m tree objects, t1, t2, …, tm. The structure 
of a tree is represented with a tree of labels, called tree-representation below. 
Definition 2.1 (tree-representation): For a leaf (or terminal) node, its tree-representation 

is null. For a non-leaf node which has h sub-objects o1, o2,…, oh at the next level with 
the labels l1, l2,…, lh, its tree-representation is {l1: tr1, l2: tr2, ..., lh: trh}, where trj is the 
tree-representation of oj (1≤ j ≤ h ). 

Example 2.1: The tree-representation of the part of movie object enclosed by the dotted 
line in Figure 1 is: {Details: {Producer: {Name}}, Cast: {Leading actor: {Birth date, More: 
{Personal quotes, Salary}}}}.  

Definition 2.2 (label path): A label path p is a path starting from the root of the tree and is 
represented with a sequence of its labels, [l1, l2, …,ln], where lj is a label and n is the 
length of p. 

Definition 2.3 (pre-paths of a label path): A label path p = [l1, l2, …,ln] has n-1 pre-paths 
(n > 2), where each pre-path is of the form, [l1,…, ls], where 1 ≤ s ≤ n –1.  

 In the proposed technique, each transaction object t (1 ≤ t ≤ m) is represented and stored 
with all its paths Pt = {Pt,leaf, Pt,pre}, where Pt,leaf is the set of label paths from the root to all 



 

leaf nodes, and Pt,pre is the set of pre-paths of all paths in Pt,leaf. Note that such a representation 
may result in the loss of information when some children have the same label. The problem is 
solved in Section 3.1. 

Table 1: Representation of dataset in example 2.2  
 Let P = tmt P,...,1=Υ . Using the paths in P, 
we produce a database D. Each path p in P 
forms a tuple in our database D, and is 
represented with <p, tidlist>, where p ∈  P 
and tidlist is the set of transaction objects 
or trees (represented with their id’s) that 
contain p. Because our transaction objects 
are similarly structured, the representation 
of objects with label paths will usually 
save a lot of space than representing them 
as trees.  
Example 2.2:  Let transaction object t1 

be the tree-representation in Example 
2.1, and transaction object t2 = 
{details: {Cinematographer: {Name}}, 
Director: {Birth date, More: {Personal 
quote, Salary}}}. Table 1 shows how the two objects are stored in the database. For 
example, t1 contains paths p1-9, which are shown in their tidlists. For t1, the paths p3, 
p6, p8 and p9 are in Pt1,leaf and paths p1, p2, p4, p5 and p7 are in Pt1,pre.  

2.2  Two Other Components for constructing substructures 
The paths in database D alone are not sufficient for constructing some interesting 
substructures with wildcard (we will see that most of the interesting substructures in 
examples of Section 3 & 4 contain wildcards). Two other necessary components for 
constructing substructures with wildcard are single paths with wildcards, and a special kind 
of subtrees composed of paths with wildcard, which are discussed below. 
 Single paths with wildcard.  Instead of using ? to represent a wildcard as in [24] that 
only matches one label, we use symbol * to represent wildcard that can match one or more 
labels in the upper part of label paths. For a label path p = [l1, l2, …, ln], where p ∈  P and n 
is the number of labels in path p, * can replace any of its pre-path pj to form a new path p′. 
But a wildcard cannot replace the last label ln of path p because the use of wildcard is to 
meet the requirements: 1) To find something common in the lower parts of semi-structured 
objects while ignoring their upper parts. 2) To find something common in the middle parts 
of some semi-structured objects from pre-path set while ignoring their upper parts. p′ is 
represented with [*, l j+1, …, ln | {u1, u2 , …, ue}], where e is the number of actual paths in 
D covered by p′ and uk (1 ≤ k ≤ e) is a path covered by *. Let U be the set of uk, 1 ≤ k ≤ e. 
We require e > 1 because wildcard is meaningless if p′ does not cover more than one path. 
 All generated paths with wildcard are added to the database D. Note that we do not 
generate paths with wildcard by simply replacing every pre-path with a wildcard, which 
will result in a large number of useless paths for substructure discovery. The paths with 
wildcard have a special tidlist format in database. The method of generating paths with 
wildcard and the representation of paths with wildcard in database are presented in Section 3.1.  
Example 2.3: Continue with Example 2.2. After the introduction of wildcard, we obtain 

the following paths with wildcard: p17 = [*, Name | {p2, p10}], which covers p3 and 

No Label Path Tidlist 
p1 Details 1,2 
p2 Details, Producer 1 
p3 Details, Producer, Name 1 
p4 Cast 1 
p5 Cast, Leading actor 1 
p6 Cast, Leading actor, Birth date 1 
p7 Cast, Leading actor, More 1 
p8 Cast, Leading actor, More, Personal quote1 
p9 Cast, Leading actor, More, Salary 1 
p10Details, Cinematographer 2 
p11Details, Cinematographer, Name 2 
p12Director 2 
p13Director, Birth date 2 
p14Director, More 2 
p15Director, More, Personal quote 2 
p16Director, More, Salary 2 



 

p11. p18 = [*, Birth date | {p5, p12}], which covers p6 and p13. p19 =[*, More | {p5, 
p12}], which covers p7 and p14. p20 = [*, More, Personal quote | {p5, p12}], which 
covers p8 and p15. p21 = [*, More, Salary | {p5, p12}], which covers p9 and p16. The 
* in p17 covers p2 and p10. The * in p18, p19, p20, p21 covers p5 and p12.  

The introduction of paths with wildcard as an 
addition to the original database D is essential to 
construct some interesting substructures. But it is 
still not sufficient. Considering the case: a single 
path with wildcard appears multiple times in a 
substructure, e.g., in Figure 3a), the path [*, name] 
appears twice in the substructure. We do not permit 
self-joining of paths to form substructures because it 
will increase search space dramatically. Therefore 
we cannot construct such kind of substructure just by 
order to construct such kind of substructures, we ne
subtrees composed of paths with wildcard. Figure 3b) s
which is composed of three paths from example 2.3: p1
 Special subtrees (or ST in short). Intuitively, the
requires that * of the component paths represent the 
object (tree). For different transaction objects, the *
addition, it is meaningless to generate a subtree by com
contains one another, e.g., p19 and p20 in example 2.3.
with wildcard p1′= [*, β1 | U1], p2′= [*, β2 | U2], …
represent multiple labels and β1,.., βm can be combined 
sf = |Uf|. If sf > 1 and any label sequence βi is not the upp
the m paths can be combined to generate a subtree in the
tree covers paths in Uf. If sf = 1, * covers only one p
wildcard. For the rest of the paper, ST is used to denote su
Example 2.4: Continue with example 2.3. paths p18 an

date, More}} because |p18.U ∩ p19.U| = |{p5, p12
{Birth date, More: {Personal quote, Salary}}}, a
formed. Although |p19.U ∩ p20.U| = |{p5, p12}| >
the label sequence of p19 is contained in that of p20

 With the three categories of components, namely, p
tree paths), paths with wildcard, and STs, we obtain 
discovery. Next, we introduce how to combine the t
candidate substructures. Note that determining whethe
paths with wildcard) is contained in a transaction objec
paths with wildcard and STs to have a special format o
discussed in Section 3.  

2.3 Constructing Substructure 
Because a single path without wildcard contains the str
a path with wildcard covers several paths without wild
of paths with wildcard, the structural information 
components are partly overlapping. As a result, not any 
and the complete set of combinations of them will res
substructures. For instance, in example 2.2 - 2.4, the
meaningful because p5 is a pre-path of p6, and neither i

* *

name name sex 

* 
birth 
date more 

salarypersonal 
quote

a) b) 
Figure 3: Subtrees with wildcard 
in transaction objects
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 subtree in the form of Figure 3b) 
same path in the same transaction 
 may represent different paths. In 
bining paths whose label sequence 
Formally, consider m (m > 1) paths 
, pm′= [*, βm | Um], where βi may 
into a tree. Let Uf = ∩i =1,…,m Ui and 
r part of the other label sequence βj, 
 form of Figure 3b) and the * in the 
ath. Then, there is no need to use 
btree in the form of Figure 3b). 

d p19 can form a ST tr1 = {*: {Birth 
| > 1. In the same way, ST tr2 ={*: 
s shown in Figure 3, can also be 
 1, they cannot form a ST because 
.   
aths without wildcard (the original 
the final database for substructure 
hree types of components to form 
r a substructure (containing STs or 
 is a nontrivial problem and require 
 tidlist in database. This problem is 

uctural information of its pre-paths, 
card and a ST consists of a number 
contained in the three kinds of 
combination of them is meaningful, 
ult in over-generation of candidate 
 combination of p5 and p6 is not 
s the combination of tr1, p6 and p13 



 

because the component p18 of tr1 can only represent p6 or p13, i.e., the structural 
information of tr1 contains that of p6 or p13 in any transaction object.  
 The challenge is how to choose a meaningful combination of paths and STs while 
considering the computational complexity. Intuitively, we require that the structural 
information of one component should not contain that of the others. For example, for 
substructure {*: {Name}, *: {Birth date, More}}, composed of two components: a path 
with wildcard and a ST, if the substructure is contained in some transaction object, then 
paths represented by [*, Name] and paths represented by the ST should not contain each 
other. We define path-set to stipulate and represent substructures discovered in our approach.  
We need the operator ≠( to explain the concept of path-set. Two paths p1 and p2 satisfy p1 
≠(  p2 if p1 is not equal to p2 and p1 is not a pre-path of p2, and vice versa. 
 k-path-set. It is a set ps = {Po, Pw, Sst} with the size k, where Po, Pw, Sst are three sets 
and meet the following requirements: 

•  Po is a set of single paths without wildcard. Suppose there are x (≥ 0) such paths 
po1, …, pox in ps.  

•  Pw is a set of single paths with wildcard. Suppose there are y (≥ 0) such paths pw1, 
…, pwy in ps. 

•  Sst is a set of STs. Each sti in Sst is now represented with {pi1, pi2, …, pil | Ui}, 
where pij (1≤ j ≤ l) is a path that forms sti and Ui is the set of paths covered by *. 
Suppose there are z (≥ 0, x+y+z = k) such STs st1, …, stz in ps. 

•  There exists a set {po1, …, pox, u1, …, uy, c1, …, cz}, where ui ∈  pwi.U (1≤ i ≤ y) 
and cj ∈  stj.U (1≤ j ≤ z), such that any two paths α, β of the set meet the 
requirements: α ≠(  β.  

We should point out that the concept of path-set imposes a restriction on the components of 
a substructure than necessary. But any relaxation of the restriction would cause the 
complexity of the discovery problem to increase drastically. The adverse effect of our 
restriction is that we ignore one kind of combination: the paths represented by wildcard 
contain one another, but the corresponding full paths represented by paths with wildcard do 
not. Substructures from such kind of combinations are uncommon and structural 
information reflected by them is usually contained in some other discovered substructures. 
See [13] for the detailed analysis. Even if we ignore such kind of combinations, our 
approach can discover more substructures than existing techniques.  
 A tree can be constructed from a path-set by recursively combining paths and STs 
sharing the same next label ls into a branch labeled ls [24]. Note that the wildcards in 
different components of the same path-set represent different label sequence so that these 
wildcards are regarded as different labels. Our approach does not rely on tree-
representation, which is used for easy understanding. Instead, both transaction objects and 
discovered substructures are represented with path-sets in our algorithm. Example 2.5 
shows how to represent transaction objects and substructures with path-sets. 
Example 2.5:  In example 2.2, t1 is expressed as a 4-path-set {p3, p6, p8, p9} and t2 is also 

expressed as a 4-path-set {p11, p13, p15, p16}. In example 2.4, the 1-path-set of tr1 is 
ps1 = {{p18, p19 | {p5, p12}}}, and the 1-path-set of tr2  is ps2 = {{p18, p20, p21 | {p5, 
p12}}}. p17 and p18 can form 2-path-set ps3 = {p17, p18} and its tree-representation is 
tr3 = {*: {Name}, *: {Birth date}}. p18 and p19 can also form a 2-path-set ps4 ={p18, 
p19}, whose tree-representation is tr4 = {*: {Birth date}, *: {More}}, where if the first 
* represents p5, the second * can only represent p12; if the first * represents p12, the 
second can only represent p5. 

 Given some path-sets, we are interested in the most “informative” one. For example, 
ps2 is more informative than ps1. The “weaker than” relationship below compares the 



 

informativeness of path-sets. Intuitively, A is weaker than B if all the structural information 
of A can be found in B. 
 Weaker than: Any path-set ps is weaker than itself. 
1)  For two single paths p and q: If both p and q are paths without wildcard, path q is 
weaker than p if q is a pre-path of p; If both p and q are paths with wildcards, path q is 
weaker than p if the label sequence of q is a prefix of that of p; If q is a path with wildcard 
and p is an original path, q is weaker than p if q covers p.  In example 2.3, p1 is weaker 
than p2, p19 is weaker than p20, and p20 is weaker than p8. 
2)  For two 1-path-set psp = {p} and psq ={q}, where p = {p1′, p2′, …, pk′ |Uk} and q = {q1′, 
q2′, …, ql′ |Ul} are STs: psq is weaker than psp if qi′ is weaker than some pji

′ for each 1 ≤ i ≤ l, 
and {pj1

′, pj2
′ , …, pjl

′} is a subset of {p1′, p2′, …, pk′}. In example 2.5, ps1 is weaker than ps2. 
3)  For path-set psp = {p1, p2, …, pm} and 1-path-set psq ={q}, where q ={q1′, q2′, …, ql′ |Ul} 
is ST: psq is weaker than psp if qi′ is weaker than some pji

 for each 1≤ i ≤ l, {pj1
, pj2

 , …, pjl
} 

is a subset of {p1, p2, …, pm} and pj1
, pj2

 , …, pjl
 have some common pre-path u ∈  Ul. In 

example 2.5, ps1 and ps2 are weaker than transaction t1 and t2 respectively.  
4)  For two path-sets psp = {p1, p2, …, pm} and psq ={q1, q2, …, qn}: psq is weaker than psp 
if for each 1 ≤ i ≤ n, qi is weaker than some subset of psq and these subsets do not overlap. 
In example 2.5, ps3 is weaker than transaction t1 and t2. But ps4 is not weaker than any 
transaction object. 

2.4  The Discovery Problem  
Consider a set of transaction objects T and a substructure expressed as a path-set ps. When 
ps is weaker than the path-set of a transaction object t from T, then t becomes an element of 
a set S. The support of ps is the percentage of |S| over |T|. A substructure is frequent if its 
support is not less than the user-defined Minsup (minimum support). A substructure is 
maximally frequent if it is frequent and is not weaker than any other frequent substructures. 
The substructure (schema) discovery problem is defined as finding all frequent 
substructures contained in the set of transaction objects T. The maximal discovery problem 
is to find all maximally frequent substructures. Using the discovered frequent path-set, one 
can derive association rules about substructures of objects.  
Example 2.6: Continue with Example 2.2. Consider the path-set {p1, p4} representing 

{Details, Cast}, its support is 1/2. Given Minsup = 2/2, only path-set {p1} is frequent 
with support 2/2.  

Example 2.7: Continue with Example 2.5. The supports of path-set ps1, ps2, ps3 are all 2/2. 
They are frequent given Minsup = 2/2. Because ps1 is weaker than ps2, ps1 is not 
maximal frequent. ps2 and ps3 are not maximal frequent because they are weaker than 
path-set {p17, p19, p21, p22} whose tree-representation is {*: {Name}, *: {Birth date, 
More: {Personal quote, Salary}}} with support 2/2. {p17, p19, p21, p22} is maximal 
frequent. The support of ps4 is 0.  

3  The Algorithm 

The Section presents the algorithm for our discovery problem defined in Section 2.3. We 
first discuss the preparation of database for substructure discovery, which includes 
encoding label path, and generating paths with wildcard. Then the algorithms for finding 
both frequent STs and frequent final substructures are presented.    

3.1  Preprocessing 



 

The section proposes the methods of coding label paths and introducing paths with 
wildcard and the special format of tidlists for paths with wildcard.  
 Coding label: The labels of paths are coded with integers. By replacing each label with 
its corresponding integer and using “,” as the delimiter to separate the code of each label, 
we represent each label path with a delimited string. Then, the “weaker than” check 
between two paths can be done by string matching. In order to make our algorithm easier to 
understand, we still use label texts instead of integers in the rest of the paper.  
Example 3.1: Figure 4 shows the structural information of three student homepages. Table 2 

shows the path codes. Path [English version, Contact] is weaker than path [English 
version, Contact, Email] because path code “10, 12” is a prefix of path code “10, 12, 9”. 

 

.
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Figure 4: The structural trees of three student homepages 
Table 2: The path code of paths in figure 4. 
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hildren are removed from the set P 
nd database D. For example, for the 
art of tree-representation of a movie 
bject: {cast: {actor: {name, birth}, 
ctor: {name, sex}}}, assume that label 
ast is coded with 5 and actor is coded 
ith 6. The actor sub-objects will form 

 new transaction set to discover 
requent substructures for actors. The 
aths containing labels below actor 
i.e., name, sex and birth) are removed 
rom the movie dataset. The two children actor labels remain in the movie dataset and are 
oded as 6.1 and 6.2 to distinguish them from each other. 

Introducing wildcard: A wildcard is used to match the upper part of some paths in P 
or D) with a common lower part. We introduce wildcard as follows: If several paths in P 
ave the same terminal label, these paths will form a bin. If at least 2 paths, a proper subset 
f the bin, have longer common lower part, the subset forms a new bin. The new bin is 
hecked until there is no proper subset with at least 2 paths and longer common lower part. 
he above process can be implemented with a modified bin sorting algorithm. After 
orting, those paths with the same lower part will be in a bin. Those bins containing only 
ne path are discarded as no wildcard is needed in the case. From each bin containing more 
han 1 path, we obtain a candidate path with wildcard in the form of [*, the common lower 
art of paths in the bin]. Considering three paths, p1 = [1, 4, 5], p2 = [2, 4, 5] and p3 = [3, 6, 
]. Two bins are generated and two candidate paths with wildcards are p4 = [*, 5] and p5 

No Path code Label path Tidlist 
p1 1 [biography] {1, 2} 
p2 1, 2 [biography, birth] {1, 2} 
p3 10, 11, 2 [English version, about, birth] {3} 
p4 1, 3 [biography, experience] {1} 
p5 4 [work] {1} 
p6 4, 5 [work, office] {1} 
p7 8, 5 [address, office] {2} 
p8 6 [name] {2, 3} 
p9 1, 7 [biography, interests ] {2} 
p10 10, 11, 7 [English version, about, interests] {3} 
p11 8 [address] {2} 
p12 8, 9 [address, email] {2} 
p13 10, 12, 9 [English version, contact, email] {3} 
p14 10 [English version] {3} 
p15 10, 11 [English version, about] {3} 
p16 10, 12 [English version, contact] {3} 
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=[*, 4, 5], where p4 covers p1, p2 and p3, and p5 covers p1 and p2. If p3 does not exist, only 
p5 is formed. 
 The support of a candidate path (formed from a bin) is the size of the union set of 
tidlists of paths in the bin. If a candidate path is frequent, a path with wildcard is generated. 
Otherwise, it is discarded. 
 Tidlists of paths with wildcard: Let P′ be the set of paths with wildcard. All paths in 
P′ are frequent. Each path p′ in P′ has a corresponding tidlist. Each tid in the tidlist of p′ 
appears in one or several tidlists of paths (without wildcard) covered by p′. Such information 
is essential for determining whether a substructure is contained in a transaction object and 
will be recorded in the tidlist of p′. The tidlist of p′ is expressed as tidlist′= {t1′:H1′, t2′:H2′, …, 
tm′:Hm′}, where m is the number of tid’s in tidlist′ and each Hi′ (1< i < m) is the set of p′.uk 
(p′.uk ∈  p′.U), where the tidlist of the original (without wildcard) path corresponding to each 
p′.uk contains ti′. All paths in P′ and their tidlists produce a database D′. 
Example 3.2: Continue with example 3.1. After sorting, paths p2 = [biography, birth] and 

p3 = [English version, About, Birth] are in the same bin with common lower part 
labeled “birth”. Given Minsup = 2/3, A new path p17 = [*, birth | {p1, p15}] is 
introduced. See Table 3 for the other generated paths.  

Table 3: Generated paths with wildcard 
After pre-processing, we obtain 
two databases: D for paths 
without wildcard and D′ for 
paths with wildcards. Note that 
P is the set of paths in D and P′ 
is the set of paths in D′.  

3.2  Overview of the algorithm 
The core of the algorithm is to compute all frequent k-path-sets. Our technique is based on 
the partition algorithm for association rule mining given in [19]. However, what we find 
are substructures, not itemsets without structure. [19] divides the horizontal database into a 
number of non-overlapping partitions and scans database only twice. Once for generating a 
set of potential frequent itemsets, and once for gathering their supports.  
 Since our intention is to investigate how to solve the schema discovery problem, in this 
paper we focus on discovering frequent structures in one partition. The method for support 
counting given in this paper can also be applied to compute the global support when all 
partitions are merged to generate global frequent substructures.   
 In order to find all frequent final substructures, we should first find all frequent STs 
from the set of paths with wildcard, P′. The discovered STs (1-path-set) and paths in P′ (or 
D′), together with their tidlists, are added back to the original database D. With the new 
database D, we discover all frequent final substructures.  
 One important property that forms the foundation of our algorithm is the downward 
closure property: If a k-path-set {p1, p2, …, pk} is frequent, then any k-1 subset of {p1, p2, 
…, pk} is also frequent. This property holds because a subset is weaker than its superset 
and because the “weaker than” relationship is transitive. 

 

3.3  Generating frequent STs 
The objective of this step is to discover all frequent STs from D′. We use r-path-structure (r > 
1) to represent these STs. A r-path-structure (r > 1) denotes a ST composed of r paths with 
wildcard. Note that a 1-path-structure (r = 1) denotes a path with wildcard, but not a ST.   

No Label path Tidlist Support 
p17 [*, birth | {p1, p15}] {1:{p1}, 2:{p1}, 3:{p15}} 3/3 
p18 [*, office |{p5, p11}] {1:{p5}, 2:{p11}} 2/3 
p19 [*, interests | {p1, p15}] {2:{p1}, 3:{p15}} 2/3 
p20 [*, email |{p11, p16}] {2:{p11}, 3:{p16}} 2/3 



 

 Because all paths in P′ (or D′) are frequent, the set of frequent 1-path-structures is P′. Let Q 
be the set of all frequent r-path-structures (including both paths with wildcard and STs). 
Each q in Q is expressed as {Pno | U}, where Pno is the set of paths forming q, and U is the 
set of paths covered by the wildcard. Each q has a tidlist that is the set of tid’s that q is 
weaker than. The format of tidlist of q is the same as that of a single path with wildcard. 
 The set of frequent r-path-structure is denoted by Fr. The detailed algorithm is given in 
Figure 5.  Lines 3 - 7 show the candidate generation process. Lines 9-12 show how to 
generate the tidlist of candidate c. The prune step (line 8) is performed from two aspects: 
One is done based on the downward closure property, the other is that we require that a r-
path-structure candidate form a tree with r leaf nodes. When r = 2, a 2-path-structure 
candidate is pruned if there exists “weaker than” relation between f1[1] and f2[1]. When r > 
2, there is no need for such a check because it has been done during the check for r = 2.   

endfor)15
endif)14

endif)13
}{then||/|.|if)12

].[...;.then..if)11
doeachfor)9

beginthenif)8
]}1[],1[,],1[{)7

beginthen)].1[]1[].2[]2[].1[]1[()1(if)6
||;)5

begindoforall)4
doforall)3

do);;2(for)2
')1

2121

21

211

212121

21

12

11

1

cFFMinsupTtidlistc

HttidlistctoHtHtaddtidlistctotaddHtHt
tidlistfttidlistft

prunedbecannotc
rfrffc

pnorfpnorfpnorfpnorfpnofpnofn
UnUfUfU

Ffstructurespath
Ffstructurespath

rFr
PF

rr

ffff

r

r

r

∪=≥

∩Φ≠∩
⋅∈∧⋅∈

−−=
−<⋅−∧−=⋅−∧∧=⋅∧>

=⋅∩⋅=
∈−

∈−
++Φ≠=

=

−

−

Λ
Λ

Figure 5: Algorithm for generating frequent STs 

Example 3.3: Continue with example 3.2. Let Minsup = 2/3. F1 = {p17, p18, p19, p20}. Please 
refer to Table 3 for F1. See [13] for the generation process of F2 (shown in Table 4).  
 

 No Path-set Tree-representation Tidlist  Support
p21 {{p17, p19|{p1, p15}}}{*: {birth, interests}} {2:{p1}, 3:{p15}}  2/3 

Table 4: F2 in example 3.3  
 All elements in Q (containing both single paths with wildcard and STs), together with 
their tidlists, are added to the original database D. Each element in Q forms a tuple in the 
new database D (containing D′).  

3.4  Generating frequent final substructures 
This step generates all frequent final substructures, expressed as path-sets, from the new 
database D (obtained at the end of Section 3.3).  The set of frequent k-path-set is denoted 
by Fk′. The frequent 1-path-set, i.e., F1′ includes the paths in P that have minimum support 
and all q in Q. The detailed algorithm is given in Figure 6. Lines 9-11 show the process of 
counting support. For a candidate c, generated from two (k-1)-path-sets, its components are 
divided into two parts cp (cp ⊆  P) and cq (cq ⊆  Q). Let m = |cp| and n = |cq|.  
 If n = 0 (line 9), c’s tidlist is obtained by intersecting the tidlists of f1 and f2. The 
support of c is the size of its tidlist. 
 If n > 0, we do not generate tidlist for c and only count its support because its tidlist is 
useless for later algorithm. To count support, we need to determine whether the k-path-set 
represented by c is contained in a transaction object t, i.e., c is weaker than t. If a transaction 
object t does not appear in all tidlists of c’s component, c is not weaker than t. However, a t 



 

appearing in all tidlists of c’s components does not mean that c is weaker than t because a path-
set is not a simple set of components. The count is handled in the following two cases:  
 1)  If n  = 1 (line 10), one of f1 and f2 does not contain any path with wildcard, i.e., cp 
= f1 or f2. If any u ∈  cq.U does not satisfy pi ≠

(
u (pi ∈  cp, 1< i <m), u becomes an element of 

set V and is removed from cq.U. Then, an element of cq.tidlist[t].H is deleted if it appears in 
V, where t is any tid in cq.tidlist. If cq.tidlist[t].H becomes null, t is deleted from cq.tidlist. 
The support counting is computed by intersecting cp.tidlist and the adjusted cq.tidlist (after 
deletion). 
 2)  If n > 1 (line 11), for each transaction t involved in the tidlist of all components of 
c, we can enumerate qi.tidlist[t].H (qi ∈  cq), i.e., paths covered by wildcard for each qi, to 
see whether there is a combination p1, …, pn, q1. 1qu , …, qm.

mqu that meets the 
requirements of k-path-set (since n and the size of qi.tidlist[t].H are usually small, the 
enumeration is fast). If so, c is weaker than t. 
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   Figure 6: Algorithm for generating all frequent substructures 
The following pruning strategies are applied to the algorithm (line 8): 1) If any subset of a 
candidate is not frequent, the candidate can be pruned. 2) If there exists “weaker than” 
relation between two paths without wildcard in a candidate, the candidate can be pruned.  
Example 3.3: Continue with example 3.2. All elements in F1, F2, together with their 

tidlists are added back to the original database in Table 2. The frequent 1-path-set F1′ = 
{p1, p2, p8, p17, p18, p19, p20, p21}. See [13] for the generation process of F3′and F2′, 
which is rather involved. Table 5 shows F2′ and F3′.  

 In Table 5, {p8, p20, p21} and {p2, p18} are maximally frequent, and the others are 
not. In addition, the algorithms in [7][9][27] can be adapted to our maximal discovery 
problem. See [13] for details about the maximal discovery problem and some optimizations 
to our algorithm.  

4  Experiment Results and Application 
We applied our system to two internet websites: one is the Internet Movies Database 
(IMDb) at us.imdb.com, and the other is the World Travel Guide (WTG) at 
www.wtgonline.com. IMDb catalogs all kinds of information on over 250,000 movies plus 
even more on over 900,000 people who helped make them. WTG contains detailed 
information of many countries and cities. We extract representative structural information 
from HTML document trees of the two websites to test our algorithm.  



 

4.1  Performance Analysis 
We ran a query using condition (title=love)^(from_year=1930)^(to_year=2010) at IMDb to 
get 3000 movie titles, from which information was extracted to form our movie dataset. 
One of the extracted semi-structured movie objects is shown in Figure 1. We choose 
information extracted from 400 links at www.wtgonline.com/navigate/region/AtoZ.asp and 
duplicate the 400 transaction objects to 3000 transaction objects to form our travel dataset.  
 

 Path-set Tree-representation Weaker thanSupport
{p1, p18} {biography, *: {office}}} {1, 2} 2/3 
{p2, p18} {biography: {birth}, *: {office}}} {1, 2} 2/3 
{p8, p17} {name, *: {birth}} {2, 3} 2/3 
{p8, p19} {name, *: {interests}} {2, 3} 2/3 
{p8, p20} {name, *: {email}} {2, 3} 2/3 
{p8, p21} {name, *: {birth, interests }} {2, 3} 2/3 
{p17, p18} {*: {birth}, *: {office}} {1, 2} 2/3 
{p17, p20} {*: {birth}, *: {email}} {2, 3} 2/3 
{p19, p20} {*: {interests}, *: {email}} {2, 3} 2/3 

 
 
 
F2′ 

{p20, p21} {*: {email}, *: {birth, interests }} {2, 3} 2/3 
{p8, p17, p20} {name, *: {birth}, *: {email}} {2, 3} 2/3 
{p8, p19, p20} {name, *: {interests}, *: {email}} {2, 3} 2/3 F3′ 
{p8, p20, p21} {name, *: {email}, *: {birth, interests }}{2, 3} 2/3 

Table 5: F2′and F3′ in example 3.3 

 Our experiment environment is a 600MHz PC with 128M of memory. Both datasets 
can be run with a single partition. Figure 7 shows the execution time results on the movie 
dataset and Figure 8 shows the execution time results on the travel dataset. The y-axis in 
Figure 7(a) and 8(a) uses a logarithmic scale to show the running time. Two general trends 
can be observed: 1) As the minimum support decreases, the execution time increases in all 
cases; 2) the execution time is linear in the size of data set. Table 6 lists the number of 
frequent substructures and maximal frequent substructures discovered at different support 
levels from the movie and travel datasets with the size of 3000.  
 Compared with the approach in [24], our technique has the ability to find more frequent 
substructures. We also believe that our algorithm is more efficient than that in [24] because 
we avoid over-generation of paths with wildcard and using expensive tree matching in 
counting support. However, the execution time of our algorithm is not directly comparable 
with that of [24] as our technique is much more powerful (i.e., it is able to generate more 
interesting substructures than the approach in [24]). The analysis below gives an indication 
of the inefficiency of tree matching.  

Assume that there are n transaction objects, each of which has m nodes. Consider a 
substructure (tree) s without wildcard has k nodes and l leaf nodes. To test whether s is 
weaker than the set of transaction objects, the time complexity of the tree match algorithm 
used in [24] is O(km1.5n). The time complexity of our approach is only O(ln) in the worst 
case, where l is much smaller than k. It is not meaningful to directly compare the time 
complexity of computing the frequency of a substructure with wildcard between our 
approach and tree matching because we adopt a more powerful wildcard mechanism than 
[24]. However, when a substructure contains wildcards, the efficiency of tree matching 
becomes much worse, while our approach is not much affected as we use an efficient 
association mining technique and a special tidlist format for paths with wildcard.  
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Figure 7: Computational performance on the movie data set 
CPU time vs data set size for travel 
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Figure 8: Computational performance on the travel data set 

 
Dataset Movie Travel 
Minsup 15% 30% 40% 50% 20% 30% 40% 50% 
The number of discovered 
substructures 

578,405 9,983 2,564 563 625,635 105,547 36,474 6,250 

The number of discovered 
maximal substructure  

7,666 377 115 44 9,767 3,685 1,598 547 

Table 6: The number of substructures found 

4.2  Example Substructures 
We choose top 250 movies (http://us.imdb.com/ top_250_films) to make up our dataset. 
We set Minsup to 40%. The Minsup is usually set high for substructure discovery of semi-
structured data as substructures with too small support is of no use, e.g., for database 
storage and query. Figure 9 shows three example interesting substructures discovered by 
our system. All of them are maximally frequent.  
 In substructure 1, there is no wildcard involved. If we had not used wildcard, we could 
only find such kind of substructures. We observe that none of the director, writer, leading 
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actor, producer and cinematographer individually has enough support for the substructure 
Spouse: {Name, Birth date (location), Trivia}, which is discovered in substructure 2 
containing wildcard. 
 In substructure 2, the wildcard * can represent any of the following label sequences: 
[director], [writer], [Details, producer], and [Details, Cinematographer], but not [Cast, 
leading actor]. The wildcard in [24] matches only one label. Therefore, [24] cannot 
discover frequent substructures from all person objects because leading actor, producer and 
cinematographer are at level 2, director and writer are at level 1. [24] cannot discover 
substructure 2. 
 In substructure 3, the two wildcards can cover director, writer, or leading actor, but not 
producer and cinematographer. Moreover, the two wildcards must represent two different 
label sequences in a movie object. Such substructures give us more possibility to fully 
explore the schema of semi-structured data. [24] cannot discover such substructures because its 
wildcard matches only one label and must represent all matched labels, but not its subset. It 
is computational prohibitive to compute the support of such substructures with a tree matching 
algorithm. In addition, two new attributes appear in substructure 3: “salary” and “personal 
quotes”, which are not in substructure 1 and 2. 
 
 

 

 

 

 

 

 

 

 
 

Figure 9: Some typical frequent substructures 

5  Conclusions 
As the amount of data available on-line grows rapidly, more and more hierarchical semi-
structured data are becoming available. The motivation of the paper is the observation that 
semi-structured objects describing the same type of information are often similarly 
structured, but not identically structured. Discovering typical substructures that are shared 
by a large number of semi-structured objects is important for both data management and 
end users. We have defined the discovery problem and proposed a technique to solve the 
problem based on a new representation of semi-structured objects and a powerful wildcard 
mechanism. The effectiveness and efficiency of the proposed technique were evaluated on 
real-life datasets.  
  
 
 

Substructure 1 
{Title, Released year, Genre, Plot outline, Country, Language, 
 Director: {Name, Birth date (location), Show more},  
 Writer: {Name, Birth date (location)}, 
 Cast: {Leading actor: {Name, Birth date (location), Mini bio, Show more: { 
   Mini bio, Spouse, Trivia}}}, 
 Details: {Producer: {Name}, Cinematographer: {Name}}} 
Substructure 2 
{Title, Released year, Genre, Plot outline, Country, Language, 
 Cast: {Leading actor: {Name, Birth date (location), Show more: {Height, Spouse, Trivia}}}, 
 *: {Name, Birth Name, Birth date (location), Show more: { 
   Mini bio, Spouse: {Name, Birth date (location), Trivia}, trivia}}} 
Substructure 3 
{Title, Released year, Genre, Plot outline, Country, Language, 
 *: {Name, Birth Name, Mini bio, Show more: { 
                          Mini bio, Spouse: {Name, Birth date (location)}, Trivia, Personal quotes}}, 
 *: {Name, Birth date (location), Show more: {Mini bio, Trivia, Salary}}  
    Details: {Producer: {Name}, Cinematographer: {Name}}}} 
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