CMPT 225

Lecture 11 – Simple sorting algorithms
Last Lecture

- We saw how to ...
 - Describe Queue
 - Define public interface of Queue ADT
 - Design and implement Queue ADT using various data structures
 - Compare and contrast these various implementations using Big O notation
 - Give examples of real-life applications (problems) where we could use Queue to solve the problem
 - Solve problems using Queue ADT
Learning Outcomes

- At the end of the next few lectures, a student will be able to:
 - describe the behaviour of and implement simple sorting algorithms:
 - insertion sort
 - selection sort
 - describe the behaviour of and implement more efficient sorting algorithms:
 - quick sort
 - merge sort
 - analyze the best, worst, and average case running time (and space) of these sorting algorithms
Today’s menu

Looking at

- insertion sort
- selection sort

Analyze their best, worst, and average case running time and space efficiency of these sorting algorithms
Why Sorting?

- **Definition**: Process of placing elements in a particular sort order based on the value of a/some search key(s)
 - Ascending/descending sort order
- **Why sorting?**
 - Easier to deal with sorted data: easier to search (e.g. binary search)
 - Common operation but time consuming
- **What can be sorted?**
 - Internal data (data fits in memory)
 - External data (data that must reside on secondary storage)
- **How to sort?**
Selection Sort
How Selection Sort works

- Array has \(n \) elements
- Starts with element at index 0 and ends with element at index \(n - 1 \)

- Until the array is sorted
 1. Find (select) the smallest element in the unsorted section of array
 - This is done by comparing 1 element with all \(n-1 \) other elements
 2. Swap it with the first element in the unsorted section of array
Let’s have a look at Selection Sort
Selection Sort is **in place** algorithm

- **in-place**: algorithm does not require additional array(s)
- Selection sort starts with an unsorted array:

![Unsorted Array]

- As the array is being sorted, the unsorted section decreases and sorted section increases:

 ![Sorting Process]

- ...
Time Efficiency Analysis of Selection Sort - 1

<table>
<thead>
<tr>
<th>Unssorted elements</th>
<th>Number of comparisons required to select “the one” (smallest or largest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(n-1)</td>
</tr>
<tr>
<td>(n-1)</td>
<td>(n-2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(n(n-1)/2)</td>
<td></td>
</tr>
</tbody>
</table>
In total, selection sort ...
- Makes $n(n-1)/2$ comparisons
- Performs $n-1$ swaps

Would the way the data is organized affect the number of operations selection sort perform (affect its time efficiency)?
- For example:
 - If the data was already sorted (in the desired sort order, e.g., ascending)?
 - If the data was sorted but in the other sort order (e.g., descending)?
 - If the data was unsorted?
Summary – Selection Algorithm

- Time efficiency
 - Best case scenario:
 - Average case scenario:
 - Worst case scenario:

- Space efficiency
 - Best case scenario:
 - Average case scenario:
 - Worst case scenario:
Insertion Sort
How Insertion Sort works

- Array has n elements
- At the start, insertion sort considers the first cell of array to be already sorted -> sorted section
- So, it actually starts with element at index 1 and ends with last element (at index $n-1$)
- Until the array is sorted

1. Pick the 1st element of the unsorted section and insert it its correct (sorted) place in the sorted section of array
 - This is done by comparing the 1st element of the unsorted section with each element of the sorted section
2. Shift the elements in sorted section up one position to make space for 1st element of unsorted section of array (if needed)
3. Inserts the element in correct position in sorted section
Let’s have a look at Insertion Sort
Insertion Sort is **in place** algorithm

- **in-place**: algorithm does not require additional array(s)
- Insertion sort starts with an unsorted array:

 ![Unsorted Array Diagram]

- As the array is being sorted, the unsorted section decreases and sorted section increases:

 ![Sorting Process Diagram]

 ![Partial Sorted Array Diagram]
Time Efficiency Analysis of Insertion Sort - 1

<table>
<thead>
<tr>
<th>Sorted Elements</th>
<th>Worst-case Comparison</th>
<th>Worst-case Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(n-1)</td>
<td>(n-1)</td>
<td>(n-1)</td>
</tr>
<tr>
<td>(n(n-1)/2)</td>
<td>(n(n-1)/2)</td>
<td></td>
</tr>
</tbody>
</table>
Time efficiency of insertion sort is affected by the way data is organized in the array to be sorted.

In the best case scenario, the array is

- Requires \(n - 1 \) comparisons
- No shift is required
Time Efficiency Analysis of Insertion Sort - 3

- In the **worst case scenario**, the array is
 - Every element has to be moved
 - Every element in sorted section of array has to be shifted
 - The outer loop runs $n-1$ times
 - In the first iteration, one comparison and shift
 - In the last iteration, $n-1$ comparisons and shifts
 - On average, $(n \ (n-1) / 2) / (n-1) = n/2$ comparisons and shifts
 - For a total of $(n-1) \ast n/2$ comparisons and shifts
What is the **average case scenario**?

- If array contains totally unsorted data, insertion sort is usually closer to the worst case scenario
Summary – Insertion Algorithm

- Time efficiency
 - Best case scenario:
 - Average case scenario:
 - Worst case scenario:

- Space efficiency
 - Best case scenario:
 - Average case scenario:
 - Worst case scenario:
Summary – Simple Sorting Algorithms

- Insertion sort
 - **Efficient**: for small \(n \)'s
 - More efficient in practice than most other simple quadratic (i.e., \(O(n^2) \)) algorithms
 - **Stable**: does not change the relative order of elements with equal keys

- Both sorts
 - **In-place**: only requires a constant amount \(O(1) \) of additional memory space
Learning Check

- We can now ...
 - Define the best, worst, and average case running time and space efficiency of
 - insertion sort
 - selection sort
 - Considering the “simple” sorting algorithms, identify the most efficient one and explain why it is the most efficient
Next Lectures

- More efficient sorting algorithms