CMPT 225

Lecture 18 – Binary Search Tree Implementation
Last Lecture

- We saw how to ...
 - Insert an element (a node containing an element)
 - Retrieve an element
 - Delete an element
 - Traverse a tree
 - Find successor of an element
 - Find predecessor of an element
 - Find minimum element value of BST
 - Find maximum element value of BST
Learning Outcomes

At the end of the next few lectures, a student will be able to:

- Define the following data structures:
 - Binary search tree
 - Balanced binary search tree (AVL)
 - Binary heap
 as well as demonstrate and trace their operations
- Implement the operations of binary search tree and binary heap
- Implement and analyze sorting algorithms: tree sort and heap sort
- Write recursive solutions to non-trivial problems, such as binary search tree traversals
Today's menu

- Various ways of implementing a Binary Search Tree
Problem Statement

- We often need to keep data in such a way that it can be frequently searched and retrieved
 - For example:
 - Possible data collection so far:
 - A value-oriented List
 - Array-based implementation
 - Search in $O(\log n)$ using binary search
 - Insertion and deletion in $O(n)$
 - Link-based implementation
 - Search, insertion and deletion in $O(n)$
Binary Search Tree

- Considering that ...
 - a BST is a sorted data collection, by definition, and
 - we can perform the operations required by the problem statement, namely insert, search and retrieve using a BST

- Then a BST may be an appropriate data collection to use in order to solve the problem

OR

- It may be an appropriate underlying data structure for a Dictionary ADT class
BST Implementation

Array-based Implementation #1

class BSTNode {

private:

 ElementType element; // element stored in tree node
 int leftChild; // index to left child/subtree
 int rightChild; // index to right child/subtree

}
BinarySearchTree ADT Class

class BinarySearchTree {

private:
 BSTNode myTree[CAPACITY]; // array of tree elements
 int root; // index of root
 int elementCount; // number of elements
BST Array-Based Implementation #1
- How it works!

BSTNode

elementCount

root
insert(newElement)
BST Implementation

- Array-based Implementation #2

```cpp
class BinarySearchTree {

private:
    ElementType myTree[CAPACITY]; // array of elements
    int elementCount;             // number of elements
}
```
BST Array-Based Implementation #2

```
myTree = new BinarySearchTree()
```

Object of `BinarySearchTree` class type

- `elementCount`
How to connect each cell of the array to its left/right child/subtree?

- Considering cell at index i
 - its left child/subtree is located at index
 - its right child/subtree is located at index
 - its parent is located at index
BST Array-Based Implementation #2
- How it works!
BST array-based implementation #2
- One disadvantage

- It creates sparse array:
BST Implementation

- Link-based Implementation

```cpp
class BSTNode {

private:
    ElementType element;    // element stored in tree node
    BSTNode* leftChild;    // link to left child/subtree
    BSTNode* rightChild;   // link to right child/subtree
}
```
BinarySearchTree ADT Class

class BinarySearchTree {

private:
 BSTNode* root; // root of tree
 int elementCount; // number of elements

BinarySearchTree ADT Class

- Recursive nature of trees can be utilized when implementing methods of a BinarySearchTree ADT class.
- Over the next few slides, we shall see one possible way to implement the BST `insert` method.
 - The “wrapper” `insert` public method is called from the client code.
 - It “wraps” the call to the recursive `insert` private method (called `insertR` in this example).
 - So, `insertR` is called from the `insert` public method.
- Hand trace this method and see how it actually insert a new element into a Binary Search Tree.
Wrapper insert()

- Called from the client code
- Public method of BST ADT class

```cpp
bool BST::insert(const ElementType& newElement) {
    Node* newNode = new Node(newElement);
    root = insertR(root, newNode);
    elementCount++;
    return true;
}  // end insert( )
```
Recursive insertR()

Node* BST::insertR(Node* subTree, Node* newNode) {
 if (subTree == NULL) return newNode;
 else {
 if (subTree->getElement() > newNode->getElement())
 subTree->setLeft(insertR(subTree->getLeft(), newNode));
 else
 subTree->setRight(insertR(subTree->getRight(), newNode));

 return subTree;
 } // end if
} // end insertR

• Called from insert(...)
• Private method of BST ADT class
#pragma once
#include <cstdlib> // NULL

using namespace std;

class Node {

private:

 // Data members
 int element;
 Node* left;
 Node* right;

public:

 // Constructors
 Node() ;
 Node(int element);
 Node(int element, Node* left, Node* right);

 // Getters
 int getElement() const;
 Node* getLeft() const;
 Node* getRight() const;

 // Setters
 void setElement(int element) ;
 void setLeft(Node* left) ;
 void setRight(Node* right) ;

 // Boolean helper functions
 bool isLeaf() const;
 bool hasLeft() const;
 bool hasRight() const;
};
```cpp
#include "Node.h"
// Node<int>

// Constructors
Node::Node() {
    //element = NULL;
    left = NULL;
    right = NULL;
}

Node::Node(int element) {
    this->element = element;
    left = NULL;
    right = NULL;
}

Node::Node(int element, Node* left, Node* right) {
    this->element = element;
    this->left = left;
    this->right = right;
}

// Getters
int Node::getElement() const {
    return element;
}

Node* Node::getLeft() const {
    return left;
}

Node* Node::getRight() const {
    return right;
}

// Setters
void Node::setElement(int element) {
    this->element = element;
}

void Node::setLeft(Node* left) {
    this->left = left;
}

void Node::setRight(Node* right) {
    this->right = right;
}
```
// Boolean helper functions
bool Node::isLeaf() const {
 return (left == NULL && right == NULL);
}

bool Node::hasLeft() const {
 return (left != NULL);
}

bool Node::hasRight() const {
 return (right != NULL);
}
Comparing Implementations

- Array-based implementation of Binary or Binary Search tree is not very efficient unless the tree is complete!
 - Why?

- Link-based implementation more common
Time Efficiency of BST Operations
- Activity - 1
Time Efficiency of BST Operations
- Activity - 2
Activity - Analysis

1. How many elements are contained in each resulting BST?
2. Determine the height of each resulting BST.
3. Which element would you be searching for if you were to perform the “best case” scenario of the search operation in each of these BST's?
4. What would be the time efficiency of this scenario?
5. Which element would you be searching for if you were to perform the “worst case” scenario of the search operation in each of these BST's?
6. What would be the time efficiency of this scenario?
Observations from our activity

- The way the data is organized when we insert each element into our BST does affect the structure of our BST, more specifically, its height H
 - Inserting unsorted elements are more likely to produce a full-like BST
 - Inserting sorted elements are more likely to produce a degenerate BST
- And this impact the time efficiency of BST’s operations
Time Efficiency of BST operations using the Big O notation

<table>
<thead>
<tr>
<th>Operations</th>
<th>$H << n$</th>
<th>$H = n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>getElementCount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>retrieve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>traverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>successor/predecessor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>min/max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning Check

- We can now ...
 - implementation a binary search tree in a variety of ways
 - Array-based
 - Link-based
 - Expressed time efficiency of its operations for various cases
Next Lectures

- Self balancing binary search trees