CMPT 225

Lecture 23 – Binary Heap
Last Lectures

- We saw how to ...
 - Understand how tree sort works
 - Sort an array using tree sort
 - Analyze time/space efficiency of tree sort
Learning Outcomes

At the end of the next few lectures, a student will be able to:

- Define the following data structures:
 - Binary search tree
 - Balanced binary search tree (AVL)
 - Binary heap
 as well as demonstrate and trace their operations
- Implement the operations of binary search tree and binary heap
- Implement and analyze sorting algorithms: tree sort and heap sort
- Write recursive solutions to non-trivial problems, such as binary search tree traversals
Today’s menu

- Our goal is to
 - Define binary heaps
 - Demonstrate and trace their recursive operations
Array-based implementations of Binary Tree

- There is another flavour of Binary Tree that can be efficiently implemented using an array-based implementation.
Binary Heap

Definition:

A complete binary tree can be implemented efficiently using an array since there are no gaps in such tree.
Maximum Binary Heap

- Maximum Binary Heap is a ...
 - complete binary tree, and
 - the key value of a node in such heap is \geq to key value of its children (if any), and
 - the node’s left and right subtrees are also maximum binary heaps

- In such a heap, the root contains the element with the largest key value
Example

Maximum Binary Heap

Example:

Complete? Max Heap?

Root = D largest key value.

0 1 2 3 4 5

7 5 7 4 3 4 ...
Minimum Binary Heap

- Minimum Binary Heap is a ...
 - complete binary tree, and
 - the key value of a node in such heap is < or = to key value of its children (if any), and
 - the node’s left and right subtrees are also minimum binary heaps

- In such a heap, the root contains the element with the smallest key value
Example
Heap operations

- Insert
- Delete
 - Delete the root
- Retrieve
 - Behaves like Min() or Max() of BST
Note about the tracing of Binary Heap algorithm

- In our lecture notes, all binary heap algorithms (insert, delete and sort) manipulate an array since a binary heap is implemented using an array as its underlying data structure.
- This is the reason why we often draw an array as we are tracing the execution of the algorithm.
- However, as we are tracing the execution of the algorithm, we also often draw the (conceptual) tree representation of the binary heap.
- The reason we do this is because it is often easier to visualize how the algorithm executes when the binary heap is represented as a tree.
- However, understand that the algorithm does not create the tree representation of the binary heap, hence it does not require additional memory space for the tree.
Insertion into a Min Binary Heap

Algorithm:

indexOfRoot = 0
indexOfBottom = elementCount
insert new element @ “bottom” of heap (@ indexOfBottom)
elementCount++
reHeapUp(indexOfBottom)

// If the element has a parent and ...
if (indexOfBottom > indexOfRoot)
 indexOfParent = floor((indexOfBottom - 1) / 2)
// ... key value of parent > key value of child then ...
if (heap[indexOfParent] > heap[indexOfBottom])
 //... swap the element with its parent
 swap heap[indexOfParent] with heap[indexOfBottom]
 reHeapUp(indexOfParent)
Insertion – Let’s Try!

▶ Insert ____ in Min binary heap:

```
  3
 / \
3  4
/ \
5 7
```

```
  3
  |
  +---
  |   
  +---
  |   
  +---
      |
      +---
      |   
      +---
      |   
      +---
```
Insertion – Let’s Try!

- Insert ____ in Min binary heap:

```
  3
 /|
/  |
3   4
 /|
/  |
5   7
```

```plaintext
  3
 /|
/  |
3   4
 /|
/  |
5   7
```

```plaintext
  3
 /|
/  |
3   4
 /|
/  |
5   7
```
Insertion – Let’s Try!

> Insert ____ in Min binary heap:

```
  3
 /   \
3  4  \
 /  \
5 7
```

```
  3
 /   \  \
 4    3  \
   /  \  \
 5  7  4
```

```
Insertion – Let’s Try!

- Insert 5, 3, 2, 6, 0 into a Min binary heap:
Insertion into a Max Binary Heap

Algorithm:

indexOfRoot = 0
indexOfBottom = elementCount
insert new element @ “bottom” of heap (@ indexOfBottom)
elementCount ++
reHeapUp( indexOfBottom )

// If the element has a parent and ...
if ( indexOfBottom > indexOfRoot )

indexOfParent = floor((indexOfBottom - 1) / 2)

// ... key value of parent < key value of child then ...
if ( heap[indexOfParent] < heap[indexOfBottom] )

//... swap the element with its parent
swap heap[indexOfParent] with heap[indexOfBottom]
reHeapUp( indexOfParent )
Insertion – Let’s Try!

Insert ____ in Max binary heap:

Before:

- 5
- 7
- 4
- 3

After:

- 7
- 5
- 4
- 3
- 7
Let’s Try!

Insert ____ in Max binary heap:

- 7
- 5
- 4
- 3
- 20
- 7

→

- 7
- 5
- 4
- 3

→

- 7
- 5
- 4
- 3
- 20
- 7
Insertion – Let’s Try!

- Insert 5, 3, 2, 6, 0 into a Max binary heap:
Deletion from a Min Binary Heap

Algorithm:

indexOfRoot = 0

Call retrieve( )  (optional)

- return element stored in root of heap (array[indexOfRoot])

Replace element stored in root with element stored at the bottom of heap i.e., last element

- copy element stored at the bottom (at index \( \text{elementCount} - 1 \)) into root of heap

- elementCount --

reHeapDown( indexOfRoot )

if ( heap[indexOfRoot] is not a leaf )

set indexOfMinChild to index of smallest child of root

if ( heap[indexOfRoot] > heap[indexOfMinChild] )

swap heap[indexOfRoot] with heap[indexOfMinChild]

reHeapDown( indexOfMinChild )
Deletion – Let’s Try!

- indexOfRoot :
- indexOfMinChild :
Deletion from a Max Binary Heap

Algorithm:

indexOfRoot = 0

Call retrieve( )  (optional)

-> return element stored in root of heap (array[indexOfRoot])

Replace element stored in root with element stored at the
bottom of heap i.e., last element

-> copy element stored at the bottom (at index elementCount-1)
  into root of heap

-> elementCount --

reHeapDown( indexOfRoot )

if ( heap[indexOfRoot] is not a leaf )

  set indexOfMaxChild to index of largest child of root

  if ( heap[indexOfRoot] < heap[indexOfMaxChild] )

    swap heap[indexOfRoot] with heap[indexOfMaxChild]

    reHeapDown( indexOfMaxChild )
Deletion – Let’s Try!

- indexOfRoot:

- indexOfMaxChild:
Time Efficiency of Binary Heap

- Insertion and Deletion ->
  - During ReHeapUp and ReHeapDown:
    - Visit each level of heap
    - Compare parent with child and swap if necessary
    - Therefore:

- Retrieve ->
  (Remember: Retrieve returns the element located at the root - Minimum or maximum)
What about Search?

- Can we efficiently search a heap as we do with a BST or an AVL?
- Why?
Searching a Binary Heap

- Considering a node in the binary heap, no sort ordering constraint dictates the position of its children. The only sort ordering constraint that exist in a binary heap is the rule that dictates the position of a child versus its parent.
Forte of Binary Heaps

- Finding the element with the largest/smallest key value
Learning Check

- We can now ...
  - Define binary heaps
  - Demonstrate and trace their recursive operations
Next Lectures

- Midterm
- Heap Sort