CMPT 225

Lectures 30 and 31 – Hashing – Part 2 – Collision Resolution Strategies
Last Lectures

- We saw how to ...
 - define hashing and hash functions
Learning Outcomes

- At the end of these lectures, a student will be able to:
 - define hashing as well as chained and open addressed hash table
 - discuss tradeoffs in designing hash functions and between collision resolution strategies
 - demonstrate and trace operations on hash table
Today’s menu

- Our goal in this set of lecture notes is to
 - describe collision in hashing
 - present collision resolution strategies
 - discuss tradeoffs of these collision resolution strategies
Problem with Hashing?

- **Collision**

- **Definition:** Collision occurs when *multiple distinct* indexing keys are hashed to the same location in the hash table (i.e. the same hash table index is produced for each of these distinct indexing keys)

- These multiple distinct indexing keys are called *synonyms*
Reducing number of collisions

- Two factors that may minimize the number of collisions are:
 - Goodness of hash function
 - Size of the table
 but they cannot completely eliminate them
Collision resolution strategies

Definition: Algorithms specifying what to do when collisions occur

Some collision resolution strategies:
- Open Addressing:
 - Linear Probing Hashing
 - Quadratic Probing Hashing
 - Random Probing Hashing
 - Rehashing (Double Hashing)
- Chain Hashing
Inserting/searching/deleting in a hash table – Scenario 1

1. Compute hash index $h(k)$ using indexing key k and “% array size”
2. Probe the resulting location in hash table -> no collision

- If we are performing an **insertion**, then we go ahead and `insert(newElement)`
- If we are performing a **search**, then `targetElement` is not found!
- If we are performing a **deletion**, then there is no element to delete
Inserting/searching/deleting in a hash table – Scenario 2

1. Compute hash index $h(k)$ using indexing key k and “% array size”
2. Probe the resulting location in hash table -> no collision

- If we are performing an **insertion**, then we are done since “the” element has already been inserted!
- If we are performing a **search**, then targetElement is found!
- If we are performing a **deletion**, then element is labelled “ToBeDelete”
Inserting/searching/deleting in a hash table – Scenario 3

1. Compute hash index $h(k)$ using indexing key k and “% array size”
2.Probe the resulting location in hash table -> collision

3. Then we follow one of the open addressing collision resolution strategies described on the following slides
Overview of open addressing

1. Compute hash index $h(k)$
2. Probe the resulting location in hash table – possible outcomes are:
 i. We find an empty cell – then we follow Scenario 1 on one of the previous slides
 ii. We find the cell occupied by “the” element – then we follow Scenario 2 on one of the previous slides
 iii. We find the cell occupied by another element -> collision occurs and it is resolved by probing another cell in hash table, i.e., repeating above Step 1 and 2 (see Scenario 3)
 iv. We discover that the hash table is full, i.e., we have probed all locations
 ➤ In the case of an insertion, we need to expand the hash table
 ➤ In the case of a search (retrieval or deletion), the element we were looking has not been found
Open addressing – General algorithm

- We compute the hash indices using the following probing sequence:

 1st probe: $h(k) \rightarrow \text{collision occurs}$ (original - 1st - hash index computed)

 2nd probe: $h'(k) = (h(k) + p(1)) \, \% \, \text{sizeOfHashTable}$ (2nd hash index computed)

 3rd probe: $h'(k) = (h(k) + p(2)) \, \% \, \text{sizeOfHashTable}$ (3rd hash index computed)

 ...

 j^{th} probe: $h'(k) = (h(k) + p(i)) \, \% \, \text{sizeOfHashTable}$ (jth hash index computed)

 where $p(i) \rightarrow \text{probing function}$
1. Linear probing hashing

- \(p(i) = i \) for \(i = 1, 2, ... \)

- Hence, we compute the next hash indices using the following probing sequence:
 1st probe: \(h(k) \rightarrow \text{collision occurs} \) (original (1st) hash index computed)
 2nd probe: \(h'(k) = (h(k) + 1) \mod \text{sizeOfHashTable} \) (2nd hash index computed)
 3rd probe: \(h'(k) = (h(k) + 2) \mod \text{sizeOfHashTable} \) (3rd hash index computed)
 ...
 \(jth \) probe: \(h'(k) = (h(k) + i) \mod \text{sizeOfHashTable} \) (\(jth \) hash index computed)
Linear probing hashing – Insertion

Step 1. If hash table is not full proceed to **Step 2**
else expand hash table (unbeknownst to the user)

Step 2. Compute hash index \(h(k)\) or \(h'(k)\) of element

Step 3. Probe cell at \(\text{hashTable}[h(k)\text{ or } h'(k)]\) -> is cell occupied?
No -> insert element -> done! -> \(O(1)\)
Yes -> is element to be inserted already in cell?
 Yes -> done! (assumption: no duplication) -> \(O(1)\)
 No -> **Collision**
 Got to **Step 2.** i.e., compute next hash index \(h'(k)\) of element following the Linear Probing Hashing alg.
 ➤ In other words: start **linear search** for an empty cell, wrapping around to the beginning of hash table if we reach the end (using modulo operator or other means)
 ➤ Worst case: \(O(n)\)
Example

Insert the following elements with indexing key value:
32, 47, 26, 34, 87, 39, 78, 61, 48, 66

Hash index h(k):

of probes:

Hash table:
\[n = 10 \]
Linear probing hashing – Searching

Step 1. If hash table is not empty

Step 2. Compute hash index \(h(k) \) or \(h'(k) \) of element

Step 3. Probe cell at \(\text{hashTable}[h(k) \text{ or } h'(k)] \) - is element found?

 Yes -> done! -> \(O(1) \)

 No -> is cell empty?

 Yes -> element not in hash table -> \(O(1) \)

 No -> Collision

Got to **Step 2.** i.e., compute next hash index \(h'(k) \) of element following the Linear Probing Hashing alg.

- In other words: start **linear search** for the element, wrapping around to the beginning of hash table if we reach the end (using modulo operator or other means)
- Worst case: \(O(n) \)
Summary - Linear probing hashing

- As we fill our hash table, what is happening?

- Major drawback:

- Major advantage:
Definition of a cluster

- Consecutive group of occupied cells
Example of clustering

About to insert '78'

Using Linear Probing Hashing.
Hence ...

- Cluster formation undermines the performance of hash table operations:
 - Insertion
 - Search (retrieval and deletion)

- Question: How to avoid primary cluster buildup?
 - Answer: Choosing the probing function $p(i)$ carefully
2. Quadratic probing hashing

- \(p(i) = i^2 \) for \(i = 1, 2, \ldots \)

Hence, we compute the hash indices using the following probing sequence:

- 1\(^{st}\) probe: \(h(k) \) (original \(1^{st}\) hash index computed)
- 2\(^{nd}\) probe: \(h'(k) = (h(k) + 1) \% \text{sizeOfHashTable} \) (2\(^{nd}\) hash index computed)
- 3\(^{rd}\) probe: \(h'(k) = (h(k) + 4) \% \text{sizeOfHashTable} \) (3\(^{rd}\) hash index computed)
- 4\(^{th}\) probe: \(h'(k) = (h(k) + 9) \% \text{sizeOfHashTable} \) (4\(^{th}\) hash index computed)

\[\vdots \]

- \(j^{th}\) probe: \(h'(k) = (h(k) + i^2) \% \text{sizeOfHashTable} \) (\(j^{th}\) hash index computed)
2. Quadratic probing hashing 2

- \(p(i) = +/- i^2 \) for \(i = 1, 2, ... \)

- Hence, we compute the hash indices using the following probing sequence:

 1\(^{st}\) probe: \(h(k) \) (original \(1^{st} \) hash index computed)
 2\(^{nd}\) probe: \(h'(k) = (h(k) + 1) \mod \text{sizeOfHashTable} \) (2\(^{nd}\) hash index computed)
 3\(^{rd}\) probe: \(h'(k) = (h(k) - 1) \mod \text{sizeOfHashTable} \) (3\(^{rd}\) hash index computed)
 4\(^{th}\) probe: \(h'(k) = (h(k) + 4) \mod \text{sizeOfHashTable} \) (4\(^{th}\) hash index computed)
 5\(^{th}\) probe: \(h'(k) = (h(k) - 4) \mod \text{sizeOfHashTable} \) (5\(^{th}\) hash index computed)
 ...
 when \(j \) is even:
 \(j^{th}\) probe: \(h'(k) = (h(k) + i^2) \mod \text{sizeOfHashTable} \) (\(j^{th}\) hash index computed)
 when \(j \) is odd:
 \(j^{th}\) probe: \(h'(k) = (h(k) - i^2) \mod \text{sizeOfHashTable} \) (\(j^{th}\) hash index computed)
LINEAR PROBING HASHING

HASH TABLE

Quadratic Probing Hashing

HASH TABLE

#1

HASH TABLE

#2
Quadratic probing hashing

For this strategy to work well, one may apply the following constraint:

- Size of hash table should not be an even number
 - Increase probability that each position in hash table is included in probing sequence (i.e., hashed)
- Ideally, size of hash table should be a prime $4g+3$ (whenever this equation produces a prime for a particular value of g)
 - Guarantees the inclusion of all positions in the probing sequence (Radke 1970)
Examples of quadratic probing hashing

Example 1:
- If $g = 2$, then size of hash table is 11
- Assume that $h(k) = 9$, for some indexing key k, what is the resulting sequence of probes using
 - Quadratic Probing Hashing 1?
 - Quadratic Probing Hashing 2?
Example 1 – Quadratic probing hashing 1

\[j = 2 \quad \therefore \text{size} = 11 \]

\[h(k) = 9 \]
Example 1 – Quadratic probing hashing 2

\[j = 2 \quad \therefore \text{size} = 11 \]

\[h(k) = 9 \]
Examples of quadratic probing hashing

- Example 2:
 - If size of hash table is 10
 - Assume that $h(k) = 9$, for some indexing key k, what is the resulting sequence of probes using
 - Quadratic Probing Hashing 1?
 - Quadratic Probing Hashing 2?
Example 2 – Both quadratic probing hashing

\[h(k) = 9 \]
Summary – Quadratic probing hashing

- Advantage: reduce the kind of clustering that occurs with linear probing hashing (called primary clustering)

 ![Insertion sequence](image)

- Disadvantage: produces a different kind of clustering (called secondary clustering)

 ![Insertion sequence](image)
Observation

So far...

- All synonyms produce the same hash index sequences (no matter what the indexing key value is)

- Goal: For each indexing key, generate a different hash index sequence
For example ...

assuming a hash fn...

\[\begin{align*}
\text{eg:} & \quad \text{Key 1} \\
& \quad \text{Key 59} \\
& \quad \text{Key 127}
\end{align*} \]

\text{SYNONYMS} \quad \text{hash index } h(K) = 3

\therefore\text{ sequence of hash indices for these synonyms}

\text{LINEAR: } 3, 4, 5, 6, \ldots
\text{QUADRATIC: } 3, 4, 7, 12, \ldots
A solution -> 3. Random probing hashing

- **p(i)** is a random number generator

- Hence, we compute the hash indices using the following probing sequence:

 1st probe: \(h(k) \)

 (original (1st) hash index computed)

 2nd probe: \(h'(k) = (h(k) + r_1) \mod \text{sizeofHashTable} \)

 (2nd hash index computed)

 3rd probe: \(h'(k) = (h(k) + r_2) \mod \text{sizeofHashTable} \)

 (3rd hash index computed)

 ...

 \(jth \) probe: \(h'(k) = (h(k) + r_{s-1}) \mod \text{sizeofHashTable} \)

 (\(jth \) hash index computed)

 where \(r_1, r_2, \ldots, r_{s-1} \) are random numbers \((\neq 0)\) and \(s \) is \(\text{sizeofHashTable} \).
Example

Insert k_1 & k_2 (k_0, k_1, k_2 are synonyms)

Step 1: $h(k_1) = 2$
$h(k_2) = 2$

Probe #1:

k_1:
$r_1 = 3$ Probe #2 = 8
$r_2 = $ Probe #3 = 8
$r_3 = 6$ Probe #4 = 7

capacity = 11
Summary: Random probing hashing

- **Advantage:**
 - Because random probing hashing creates different sequences of hash indices for each synonym
 - No more constraint on hash table size
 - Prevents formation of secondary clusters

- **Disadvantage:**
 - Imposes the constraint that the probing sequence must be the same every time it is generated for a particular indexing key
 - Otherwise, an element with indexing key k that has already been inserted into the hash table may not be found again
Random probing hashing

Solution 1:
- If the chosen random number generator is such that it **may generates different probing sequences** for a particular indexing key (if, for example, the random number generator is initialized at first invocation only), we must save the generated random numbers $r_1, r_2, \ldots, r_{s-1}$ for that indexing key.

Solution 2:
- If the chosen random number generator is such that it **always generates the same probing sequence** for a particular indexing key (if, for example, the random number generator can be initialized with the same seed every time the probing sequence for a particular indexing key is generated), we must save the seed for that indexing key or generate the seed from the indexing key.
4. Rehashing probing hashing

- $p(i) = h_p(k)$ is a hashing function itself

- Hence, we compute the hash indices using the following probing sequence:
 1st probe: $h(k)$ (original (1st) hash index computed)
 2nd probe: $h'(k) = (h(k) + h_p(k)) \% \text{sizeofHashTable}$ (2nd hash index computed)
 3rd probe: $h'(k) = (h(k) + 2 \times h_p(k)) \% \text{sizeofHashTable}$ (3rd hash index computed)
 ...
 jth probe: $h'(k) = (h(k) + (j-1) \times h_p(k)) \% \text{sizeofHashTable}$ (jth hash index computed)
Rehashing probing hashing

- **Constraints:**
 - Size of hash table should be a prime number so that each position in the table can be included in the sequence
 - \(h_p(k) \neq 0 \)
Example

Textbook:
- See Double Hashing pages 575-577
Summary – Random and rehashing probing hashing

- Advantage: reduce clustering, hence improve time efficiency (i.e., help keep time efficiency $O(1)$)

- Disadvantage:
 - Overhead
 - \(\rightarrow \) some space
 - \(\rightarrow \) some computation
 - We still have to ensure that all locations are probed
Learning Check

- We can now ...
 - describe collision in hashing
 - present collision resolution strategies
 - discuss tradeoffs of these collision resolution strategies
Next Lectures

- Hashing – Part 3 – Chain Hashing