CMPT 225

Lecture 35 – External Storage – Part 2 – B-Tree
Last Lectures

- We saw how to ...
 - Investigate various ways of managing data too large to fit in memory
 - Perform operations on such data
 - e.g.: searching using index files and data files
Learning Outcomes

» At the end of these lectures, a student will be able to:
 » External Storage
 » Perform operations on data too large to fit in memory
 » e.g.: searching using index files and data files
 » Data Organization
 » Define B – Trees and B+ Trees
 » Demonstrate the functioning of their operations
Today’s menu

- Our goal in our next lectures is to
 - Define B-Trees
 - Demonstrate the functioning of their operations
B-Tree

Definition:

- A **B-Tree** is a “external” data collection that organizes its blocks \(B\) into an \(m\)-way search tree, and in addition
 - the root of a **B-Tree** has at least 2 children (unless it is a leaf node)
 - and its other non-leaf nodes have at least \(\lceil m / 2 \rceil\) children

- Can be used to organize index files
m-way tree?

- Remember **n-ary tree**
 - 2-ary or binary tree / binary search tree
 - 3-ary tree
 - 4-ary tree
 - rooted tree in which each node has no more than **n** children
- **n-ary tree** is an **m-way tree**
- **n-ary search tree** is a **m-way search tree**
- **m** signifies the degree of tree
conceptual representation of

Example: m-way search tree (m=4)

of levels = 3

7 12 15

4 5

8 9 11

18 20

1 3 6

10

16 17

22 23

• each non-leaf has at most 4 subtrees/children

• 4-1=3 key values in ascending order
m-way search tree

- **Definition:**
 - An \(m\)-way search tree \(T\) is an \(m\)-way tree such that
 - \(T\) is either empty

 OR
 - each non-leaf node of \(T\) has at most \(m\) children (subtrees) \(T_0, T_1, ..., T_{m-1}\)
 and \(m - 1\) search key values \(K\)'s in ascending order:
 \[K_1 < K_2 < ... < K_{m-1} \]
 - for every search key value \(V\) in subtree \(T_i\):
 \[V < K_1, \quad i = 0 \]
 \[K_i < V < K_{i+1}, \quad 1 \leq i \leq m-2 \]
 \[V > K_{m-1}, \quad i = m-1 \]

 - every subtree \(T_i\) is also an \(m\)-way search tree
B-Tree

- A B-Tree is built from the leaves up, rather than from the root down, and so all leaf blocks in a B-Tree are on the same level.
- Hence, B-Trees are balanced m-way search trees, just as AVL trees are balanced binary search trees.
B-Tree Structure

- Each block contains a tree node
- In a node:
 - $m - 1$ index records:
 <search key, data file block #>
 - m index file block #
 containing root of each of its subtrees/children
B-Tree Example

B-Tree of order 5 (m = 5) in which every node (except the root and the leaves) has
• at least \(\lceil 5 / 2 \rceil = 3 \) children, and
• at most 5 children

Only showing

<search key, data file block #>
Children: index file block #
Back to
Search - Take 4 – Yet an even more efficient search

- A B-Tree is used as the data organization in the index file
Search - Take 4 - Using a B-Tree

1. Access (read into memory) block from **index file** containing the root

2. Linearly search block for target search key
 - If found: determine the matching data file block # and access that block from **data file**
 - If more than one data records per block, perform linear search to find target data record
 - If not found & block is leaf -> not there - done!

3. Otherwise, determine which index file block # to access next based on rules of construction of m-way search tree

4. Access block from **index file** and repeat above Steps 2 to 4
Search - Take 4 - Using a B-Tree (m = 4)
Constructing a B-Tree

- Let's construct the B-Tree shown on the previous slide where \(m = 4 \)
- To do so, we shall insert index records `<search key, data file block #>` containing the following 18 search keys \((\text{elementCount} = 18) \):

 12, 1, 7, 23, 20, 6, 18, 5, 4, 22, 10, 15, 8, 3, 9, 17, 11, 16

 Note: for space reason, we shall only insert the search key part of the index record

- Remember:
 - Index records `<search key, data file block #>` are inserted in a block in ascending sort order of search key value
 - In a B-Tree, 1 block contains 1 node
Let’s begin by inserting element with search key 12:

- **Data file**: Insert element (i.e., data record) into block \(b \) in data file
- **Index file**: Since the B-Tree is empty, we create the first block i.e., the root, by inserting index record \(<12, b>\) into the block and inserting the block into index file

Drawing of this first block:
B-Tree Insertion

- **Insert 1:**
 - Compare each search key found in index record already in the root with the search key 1 and since $1 < 12$, move 12 over, then insert the index record $<1, \text{data file block #}>$ into it.

- **Insert 7:**
 - Compare each search key found in index records already in the root with the search key 7 and since $1 < 7 < 12$, move 12 over, then insert the index record $<7, \text{data file block #}>$ into the space made available.
B-Tree Insertion

- Insert 23:
 - Since the root is full, we split it as follows:
 - create a sibling and move the keys > middle search key (i.e., 7) into it
 - create a new block (parent) and move the middle search key (i.e., 7) into it
 - link the subtrees to the newly formed parent block using index file block #
B-Tree Insertion

Insert 23 (cont'd):

- Starting at the root, since 7 < 23, 23 is inserted into its right subtree.
- Considering the root of its right subtree, since its only key 12 < 23, insert the index record `<23, data file block #>` after 12.
B-Tree Insertion

- Insert 20:
 - Starting at the root, since 7 < 20, 20 is inserted into its right subtree
 - Moving on to the root of its right subtree, since 12 < 20 < 23, move 23 over, then insert the index record `<20, data file block #>` into the space made available
B-Tree Insertion

- Let's pick up the pace now...

- Insert 6, i.e., insert the index record \(<6, \text{data file block \#}>\)

- Insert 18, i.e., insert the index record \(<18, \text{data file block \#}>\), but the destination block is full
B-Tree Insertion

Insert 18:

- Since the destination block is full, we split it as follows:
 - create a sibling and move the keys > middle search key (i.e., 20) into it
 - create a new block (parent) and move the middle search key (i.e., 20) into it
 - link the newly formed rightmost subtree to the parent block using index file block #
- insert 18
B-Tree Insertion

- Insert 5, i.e., insert the index record <5, data file block #>
B-Tree Insertion

- Insert 4 - first split:

- Insert the index record <4, data file block #>
B-Tree Insertion

- Insert 22:
B-Tree Insertion

- Insert 10:
B-Tree Insertion

- Insert 15:
B-Tree Insertion

- Insert 8, 3, 9 and 17:
B-Tree Insertion

- Insert 11:

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```

```
1  3  4
/  /  /
6  8 10
/  /  /
5  7  9
```
B-Tree Insertion

Insert 16:
Time Efficiency Analysis of Search - Take #4 - B-Tree

Assumption: the entire index file (B-Tree) cannot be loaded into main memory

- What is the time efficiency of searching disk-bound data using a B-Tree (index file)?
- In order to analyze the time efficiency, we need to know the height of a B-Tree accommodating 36M records
- Answer:

 Assuming we are using a B-Tree of order 4 to store our 36M search keys (and matching block #'s) and that each block of the B-Tree is filled (i.e., each block contains 3 index records) and that every level of our B-Tree is filled, then our B-Tree has:

 \((4^H - 1)\) blocks, where \(H\) is the height (the number of levels)
Time Efficiency Analysis of Search - Take #4 - B-Tree

- $4^H - 1 = 12,000,000$ blocks
- $\log_4 4^H = \log_4 12,000,001$
- $H = \log_4 12,000,001$
- $H = \frac{\log_2 12,000,001}{\log_2 4}$
- $H = \log_2 12,000,001$

In this example, we could increase the value of m, which would increase the number of index records in a block, which would decrease the height of our B-Tree, hence further reducing the number of disk accesses performed during a search of our data collection containing 36M Canadians.
Advantage of B-Trees

- Good external data collection for index file and hence for disk-bound data
 - When n is large, m can be set to a large number, which keeps the height of the B-Tree short
 - Since the number of disk accesses is proportional to the height of a tree (# of levels), then short height translates into small number of disk accesses, and hence good time efficiency for search-insert/remove operations

- In practice, commercial databases use specialized versions of these search trees where m is of the order of 100
Learning Check

- We can now ...
 - Define B-Trees
 - Demonstrate the functioning of their operations
Next Lectures

- B+ Trees