Sorting in Linear Time

Data Structures and Algorithms
Andrei Bulatov
Comparison Sorts

The only test that all the algorithms we have considered so far is comparison.

The only information we obtain about an input sequence \(\langle a_1, a_2, \ldots, a_n \rangle \) is given by \(a_i < a_j, a_i \leq a_j, a_i = a_j, a_i \geq a_j \) or \(a_i > a_j \).

We will assume that all the input numbers are different.

Then the it suffices to use only one comparison \(a_i \leq a_j \).
The Decision Tree Model

Observe that for different input permutations, even if they differ only in the order of elements, our algorithm must perform different actions. Therefore, we view its work as recognizing a permutation. It is convenient to represent this process as a decision tree.
Decision Trees

Let the input sequence contain n elements.
We assume they are numbers from 1 to n.
Therefore, the input sequence is a permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$.
Each internal node is labeled by $i : j$ for some i and j in the range $1 \leq i, j \leq n$.

Execution of the algorithm is a path from the root to a leaf.
At each internal node a comparison $a_i \leq a_j$ is made.
Depending on the outcome either comparisons on the left or the right subtree.
When we come to a leaf, the algorithm recognizes a particular ordering.
Lower Bound

Theorem

Any comparison sort algorithm requires $\Omega(mn)$ comparisons in the worst case.

Proof

There are $n!$ permutations of n elements.

The algorithm should recognize all of them.

Therefore the decision tree contains $k \geq n!$ leaves.

The complete binary tree has 2^h leaves where h is the height of the tree, the length of the longest root-to-leaf path.

$$n! \leq k \leq 2^h$$

$$h \geq \log(n!) = \Omega(n \log n)$$

Finally, note that the height of the tree is running time in the worst case.
Counting Sort

Suppose we are allowed to do more than just comparisons. We also assume that the input numbers are in the range 0 to k. We give an algorithm that works in $\Theta(n)$ time provided $k = O(n)$.

The idea is: for each input element x to count how many elements are less than x, and use this information to place x to the right place in the output sequence.

We use $A[1..n]$ the input array
$B[1..n]$ the output array
$C[0..k]$ auxiliary storage

Note that we do not assume that all elements are different.
Counting Sort: Algorithm

Counting-Sort(A, B, k)
for i = 0 to k do
 set C[i] := 0
for j = 1 to n do
 set C[A[j]] := C[A[j]] + 1 /* C[i] contains the number of elements equal to i */
for i = 1 to k do
 set C[i] := C[i] + C[i-1] /* C[i] contains the number of elements less than or equal to i */
for j = n downto 1 do
 set C[A[j]] := C[A[j]] - 1
endfor
Counting Sort: Soundness and Running Time

Theorem

Counting Sort correctly sorts a sequence of n elements in $O(n)$ time, provided $k = O(n)$

Proof

Running time:

Each of the 4 for loops is iterated at most $\max\{n, k\}$ times

Soundness:

Trace the content of arrays

QED
Stable Sorting

For the next algorithm it is important how Counting Sort and other sorting algorithms deal with equal elements. A sorting algorithm is called \textit{stable} if it preserves the order of equal elements in the input sequence, that is,

if $a_i = a_j$ and $i < j$ in the input sentence, then a_i goes first in the output sequence.

\textbf{Lemma}

Counting Sort is stable.

\textbf{Proof}

Then in the last for loop we first output $A[j]$ then $A[i]$.

Moreover, between the outputs $C[A[i]] = C[A[j]]$ is decremented.

Therefore $A[i]$ is placed into B with smaller index than $A[j]$.
Radix Sort

Punch card

Radix sorting machine
Radix Sort: The Idea

If the elements of the input sequence are d-digit integers, we can first sort the according the most significant digit, then the second most significant digit, etc.

This, however, requires a lot of copying and auxiliary storage

Radix Sort:
Sort in place according to the least significant digit
But use a stable sorting algorithm!!

329 72 70 329
457 35 39 355
657 43 46 436
839 45 89 47
436 65 35 67
720 32 47 70
355 83 67 89
Radix Sort: Algorithm

Radix-Sort(A,d)
for i=0 to d do
 use a stable sorting algorithm to sort array A on digit i
endfor

Theorem
Radix Sort correctly sorts a sequence of n d-digit numbers in which each digit can take up to k different values in \(O(d(n+k)) \) time.
Radix Sort: Analysis

Running time:
RadixSort considers \(d \) digits in turn
each pass takes \(O(n + k) \) time (when using, say, Counting Sort)

Soundness:
By induction on the number \(d \) of digits

Base Case: \(d = 1 \) Counting Sort just sorts everything

Induction Step: Suppose algorithm works correctly for \(d - 1 \)
Radix sort on \(d \)-digit numbers is equivalent to \(d \) runs of radix sort on smaller \(d - 1 \) – numbers, followed by sorting on digit \(d \).
By Induction Hypothesis Radix Sort sorts correctly on lower \(d - 1 \) digits
Radix Sort: Analysis (cntd)

Before the last sort on digit d, all the numbers are properly sorted accordingly their last $d - 1$ digits.

When sort on digit d, consider two elements a and b with d-th digits a_d and b_d respectively

1. If $a_d < b_d$ then the algorithm will put a before b, which is correct
2. If $a_d > b_d$ the algorithm will put b before a, which is again correct
3. If $a_d = b_d$ the algorithm will leave a and b in the same order as before, because it is stable.

This order is again correct, for the relative order of a and b depends in this case on the lower $d - 1$ digits.

QED
Bucket Sort: The Idea

Counting Sort and Radix Sort achieve significant speed up against comparison algorithms because they use certain assumptions about the input numbers:

They are small integers, or integers of bounded size.

Bucket Sort uses an assumption about the distribution of these numbers:

They are taken uniformly at random from \([0; 1)\)

Then we:

Split \([0;1)\) into \(n\) equal intervals (buckets)
Put every input element into the corresponding bucket
Sort each bucket
Concatenate the buckets
Bucket Sort: Algorithm

A[1..n] the input array
B[1..n] heads of buckets
 i-th bucket is organized as a list with a pointer $B[i]$ to the top of the list

Bucket-Sort(A,d)
set $n := \text{length}(A)$
for $i = 0$ to n do
 insert $A[i]$ into list $B[\lfloor n \cdot A[i] \rfloor]$
endfor
for $i = 0$ to n do
 sort list $B[i]$ with insertion sort
concatenate the lists $B[1], B[2], ..., B[n]$
Bucket Sort: Soundness

Theorem
Bucket Sort correctly sorts a sequence of numbers from the interval \([0;1)\)

Proof.
Obvious
Bucket Sort: Running Time

Theorem

The expected running time of Bucket Sort is $O(n)$

Proof.

Clearly, the first for loop takes $\Theta(n)$ time to complete.

Each iteration of the second for loop contributes $O(n_i^2)$ time where n_i is the number of elements in the i-th bucket.

Therefore

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$
Bucket Sort: Running Time

Proof (cntd).

Take the expectation of both sides

\[
E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \right]
\]

\[
= \Theta(n) + E\left[\sum_{i=0}^{n-1} O(n_i^2) \right]
\]

\[
= \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])
\]

We show that \(E[n_i^2] = 2 - \frac{1}{n} \)
Bucket Sort: Running Time

Proof (cntd).

Define indicator random variables

\[X_{ij} = 1 \text{ if and only if } A[j] \text{ falls into bucket } i, \text{ otherwise } X_{ij} = 0 \]

Thus \(n_i = \sum_{j=1}^{n} X_{ij} \)

We get

\[E[n_i^2] = E \left[\left(\sum_{i=0}^{n-1} X_{ij} \right)^2 \right] \]

\[= E \left[\sum_{j=1}^{n} \sum_{k=1}^{n} X_{ij} X_{ik} \right] = E \left[\sum_{i=1}^{n} X_{ij}^2 + \sum_{j=1}^{n} \sum_{1 \leq k \leq n, k \neq j} X_{ij} X_{ik} \right] \]

\[= \sum_{i=1}^{n} E[X_{ij}^2] + \sum_{j=1}^{n} \sum_{1 \leq k \leq n, k \neq j} E[X_{ij} X_{ik}] \]
Bucket Sort: Running Time

Proof (cntd).

Then \(E[X_{ij}^2] = 1 \cdot \frac{1}{n} + 0 \cdot (1 - \frac{1}{n}) = \frac{1}{n} \)

and, since \(X_{ij} \) and \(X_{ik} \) are independent

\[E[X_{ij}X_{ik}] = E[X_{ij}] \cdot E[X_{ik}] = \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \]

Finally

\[E[n_i^2] = \sum_{j=1}^{n} \frac{1}{n^2} + \sum_{j=1}^{n} \sum_{1 \leq k \leq n, j \neq k} \frac{1}{n^2} \]

\[= n \cdot \frac{1}{n} + n(n-1) \cdot \frac{1}{n^2} \]

\[= 1 + \frac{n-1}{n} = 2 - \frac{1}{n} \]
Bucket Sort: Running Time

Proof (cntd).

For the running time we now have

\[
E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])
\]

\[
= \Theta(n) + \sum_{i=0}^{n-1} O\left(2 - \frac{1}{n}\right)
\]

\[
= \Theta(n) + O(n) = \Theta(n)
\]

QED