Problem 1

- A heap of size n has at most $\lceil n/2^{h+1} \rceil$ nodes with height h. **Key Observation:** For any $n > 0$, the number of leaves of nearly complete binary tree is $\lceil n/2 \rceil$. **Proof by induction**

Base case: Show that it’s true for $h = 0$. This is the direct result from above observation. **Inductive step:** Suppose it’s true for $h - 1$. Let N_h be the number of nodes at height h in the n-node tree T. Consider the tree T' formed by removing the leaves of T. It has $n' = n - \lceil n/2 \rceil = \lfloor n/2 \rfloor$ nodes. Note that the nodes at height h in T would be at height $h - 1$ in tree T'. Let N_{h-1}' denote the number of nodes at height $h - 1$ in T', we have $N_h = N_{h-1}'$. By induction, we have $N_h = N_{h-1}' = \lceil n'/2^h \rceil = \lceil \lfloor n/2 \rfloor/2^h \rceil \leq \lceil (n/2)/2^h \rceil = \lfloor n/2^{h+1} \rfloor$.

Remark: Initially, I give following proof, which is flawed. The mistake is made in the claim “The remaining nodes have height strictly more than h. To connect all subtrees rooted at node in S_h, there must be exactly $N_h - 1$ such nodes.” To see why it fails, here is a counterexample. Consider $h = 2$. The black two nodes has height 2, and $N_h = N_2 = 2$. The red node, among “The remaining nodes”, has height 1, which is less than 2. Also, the number of nodes (blue nodes) connecting two black nodes is 2, instead of $N_2 - 1 = 1$.

Flawed Proof: **Property 1:** Let S_h be the set of nodes of height h, subtrees rooted at nodes in S_h are disjoint. In other words, we cannot have two nodes of height h with one being an ancestor of the other. **Property 2** All subtrees are complete binary trees except for one subtree. Now we derive the bounds of n by N_h given these two properties. Let N_h be the number of nodes of height h. Since $N_h - 1$ of these subtrees are full, each subtree of them contains exactly $2^{h+1} - 1$ nodes. One of the height h subtrees may be not full, but contain at least 1 node at its lower level and has at

\[\text{Figure 1: Counterexample} \]
least 2^h nodes. The remaining nodes have height strictly more than h. To connect all subtrees rooted at node in S_h, there must be exactly $N_h - 1$ such nodes (Flawed here!). The total of nodes is at least $(N_h - 1)(2^{h+1} - 1) + 2^h + N_h - 1$ while at most $N_h 2^{h+1} - 1$, So

$$\frac{(N_h - 1)(2^{h+1} - 1) + 2^h + (N_h - 1)}{N_h} \leq n \leq \frac{N_h(2^{h+1} - 1) + N_h - 1}{N_h} \quad (1)$$

$$\Rightarrow -2^h \leq n - N_h 2^{h+1} \leq -1 \quad (2)$$

$$\Rightarrow \text{The fraction part of } n/2^{h+1} \text{ is larger than or equal to } 1/2 \quad (3)$$

$$\Rightarrow N_h \leq \left\lceil n/2^{h+1} \right\rceil \quad (4)$$

• A heap with n elements has a height of $\Theta(\log n)$. ($\Theta(n)$ is a typo in problem sheet).

Problem 2

• min-heap, if elements are sorted by ascending order; max-heap, if elements are sorted in descending order.

• Show that, with the array representation for storing an n-element heap, the leaves are the nodes indexed by $\lfloor n/2 \rfloor + 1, \lfloor n/2 \rfloor + 2, \ldots, n$.

Proof. Basis: The claim is trivially true for $n = 1$. Inductive step: Suppose the claim is true for $n = k (k \geq 1)$. That is, the leaves are the nodes indexed by $\lfloor k/2 \rfloor + 1, \lfloor k/2 \rfloor + 2, \ldots, k$. If k is even, then its parent $\lfloor k/2 \rfloor$ has only one child. In this case, when $n = k + 1$, $\lfloor k/2 \rfloor$ will have two nodes, while others remain unchanged. Since $\lfloor k/2 \rfloor = \lfloor (k + 1)/2 \rfloor$ when k is even, the claim is true for $n = k + 1$ when k is even. If k is odd, when $k \to k + 1$, the new node will be appended to the tree as a child of node $\lfloor k/2 \rfloor + 1$, while others remain unchanged. So the leaves are indexed by $\lfloor k/2 \rfloor + 2, \ldots, k + 1$. Because $\lfloor k/2 \rfloor + 2 = \lfloor (k + 1)/2 \rfloor + 1$ when k is odd, the claim is true for $n = k + 1$ given k is odd. By mathematical induction, the claim is true for all $n \geq 1$. \qed

Problem 3 See Figure below.

Problem 4 Suppose the input stored in variables A, B, C, D, E.

2
Algorithm 1 Sort five elements within seven comparisons

if $A > B$ (1st comparison) then
 swap A and B so that $A < B$
end if

if $C > D$ (2nd comparison) then
 swap C and D so that $C < D$
end if

if $A > C$ (3rd comparison) then
 swap C and A so that $A < C \leq B$ and $A \leq D$
 swap B and D so that $A \leq C \leq D$ and $A \leq B$
end if

{So far, we have $A \leq C \leq D$ and $A \leq B$}

if $E < C$ (4th comparison) then
 if $E > A$ (5th comparison) then
 $F \leftarrow E$
 $E \leftarrow D$
 $D \leftarrow C$
 $C \leftarrow F$
 else
 $F \leftarrow E$
 $E \leftarrow D$
 $D \leftarrow C$
 $C \leftarrow A$
 $A \leftarrow F$
 end if

{note that we still have $A \leq B$}
else
 if $E < D$ (5th comparison) then
 swap E and D so that $A \leq C \leq D \leq E$
 end if
end if

if $B < D$ (6th comparison) then
 if $B < C$ (7th comparison) then
 return A, B, C, D, E
 else
 return A, C, B, D, E
 end if
else
 if $B < E$ (7th comparison) then
 return A, C, D, B, E
 else
 return A, C, D, E, B
 end if
end if
Figure 2: Solution to Problem 3