Bucket-Sort

Have seen lower bound of $\Omega(n \log n)$ for comparison-based sorting algs
Some “cheating” algorithms achieve $O(n)$, given certain assumptions re input

One example: **bucket sort**

Assumption: input numbers to be sorted are drawn from **uniform distribution** on $[0, 1)$
In this case, **expected** running time of bucket sort is $O(n)$
Alg maintains “buckets” (linked lists). Basic idea:

- if you have n input elements, then we need n buckets
- divide $[0, 1)$ evenly into n consecutive sub-intervals
 $[0, 1/n), [1/n, 2/n), \ldots, [(n-1)/n, 1)$ (that's them buckets)
- given some element $A[i] \in [0, 1)$, throw it into bucket with index $[n \cdot A[i]]$
- hope that input is distributed evenly among buckets
- sort buckets separately and concatenate results
Input $A = A[1], \ldots, A[n]$ with $A[i] \in [0, 1)$ drawn uniformly at random

Need auxiliary array $B[0], \ldots, B[n-1]$ of linked lists

Bucket-Sort(A)

1. $n \leftarrow \text{length}(A)$
2. \textbf{for} $i \leftarrow 1$ \textbf{to} n \textbf{do}
3. \hspace{1em} insert $A[i]$ into list $B[\lfloor n \cdot A[i] \rfloor]$
4. \textbf{end for}
5. \textbf{for} $i \leftarrow 0$ \textbf{to} $n - 1$ \textbf{do}
6. \hspace{1em} sort list $B[i]$ with insertion sort
7. \textbf{end for}
8. concatenate lists $B[0], \ldots, B[n-1]$ together in order

Claim: expected running time is $O(n)$
Example

10 inputs elements, thus buckets
[0, 1/10), [1/10, 2/10), ... [9/10, 1)

After sorting buckets:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32</td>
<td>0.02</td>
</tr>
<tr>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>0.78</td>
<td>0.22</td>
</tr>
<tr>
<td>0.55</td>
<td>0.32</td>
</tr>
<tr>
<td>0.91</td>
<td>0.41</td>
</tr>
<tr>
<td>0.22</td>
<td>0.55 → 0.59</td>
</tr>
<tr>
<td>0.41</td>
<td>/</td>
</tr>
<tr>
<td>0.59</td>
<td>0.72 → 0.78</td>
</tr>
<tr>
<td>0.72</td>
<td>/</td>
</tr>
<tr>
<td>0.02</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Correctness obvious

Why expected running time $O(n)$?

Certainly depends on size of buckets (# of elements in linked lists)

Let n_i be random variable denoting size of i-th bucket, B_i

Insertion sort is $O(n^2)$ alg, thus overall running time

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

Take expectations and do some stuff:

$$E[T(n)] = E \left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \right]$$

$$= \Theta(n) + E \left[\sum_{i=0}^{n-1} O(n_i^2) \right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} E[O(n_i^2)]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])$$
So, what’s $E[n_i^2]$?

Claim: $E[n_i^2] = 2 - 1/n$ for $0 \leq i \leq n - 1$

Clearly same expectations for all buckets since input is drawn from uniform distribution on $[0, 1)$: each value is equally likely to fall into any bucket.

Define r.v. X_{ij} for $i = 0, \ldots, n - 1$ and $j = 1, \ldots, n$:

$$X_{ij} = \begin{cases}
1 & A[j] \text{ falls into bucket } i \\
0 & \text{otherwise}
\end{cases}$$

Clearly,

$$n_i = \sum_{j=1}^{n} X_{ij}$$

because X_{ij} is equal to 1 for each element that falls into i-th bucket.
\[E[n_i^2] = E \left[\left(\sum_{j=1}^{n} X_{ij} \right)^2 \right] \]

\[
\overset{(*)}{=} E \left[\sum_{j=1}^{n} \sum_{k=1}^{n} X_{ij} X_{ik} \right] \\
\]

\[
= E \left[\sum_{j=1}^{n} X_{ij}^2 + \sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n} X_{ij} X_{ik} \right] \\
\]

\[
= \sum_{j=1}^{n} E[X_{ij}^2] + \sum_{1 \leq k \leq n} E[X_{ij} X_{ik}] \\
\]

(*) is because

\[
\left(\sum_{j=1}^{n} X_{ij} \right)^2 \\
= (X_{i1} + X_{i2} + \cdots + X_{i,n-1})^2 \\
= X_{i1}X_{i1} + X_{i1}X_{i2} + \cdots + X_{i1}X_{i,n-1} + \\
X_{i2}X_{i1} + X_{i2}X_{i2} + \cdots + X_{i2}X_{i,n-1} + \cdots + \\
X_{i,n-1}X_{i1} + X_{i,n-1}X_{i2} + \cdots + X_{i,n-1}X_{i,n-1}
\]
By definition of expectation,

\[E[X_{ij}^2] = E[X_{ij}] = 0 \cdot \left(1 - \frac{1}{n}\right) + 1 \cdot \frac{1}{n} = \frac{1}{n} \]

and when \(k \neq j \), \(X_{ij} \) and \(X_{ik} \) are independent, and thus

\[E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}] = \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \]

This gives

\[
E[n_i^2] = \sum_{j=1}^{n} \frac{1}{n} + \sum_{1 \leq k \leq n \atop k \neq j} \frac{1}{n^2} \\
= n \cdot \frac{1}{n} + n(n-1) \cdot \frac{1}{n^2} \\
= 1 + \frac{n-1}{n} \\
= 1 + \frac{n-1}{n} - \frac{1}{n} \\
= 2 - \frac{1}{n}
\]

and therefore

\[
E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2]) \\
= \Theta(n) + \sum_{i=0}^{n-1} \left(2 - \frac{1}{n}\right) = \Theta(n)
\]
Note: bucket sort may have linear running time even when input is not drawn from uniform distribution on \([0, 1)\):

We’re fine whenever sum of squares of bucket sizes is linear in \# of elements (that’s the insertion sort)

Or if we use, say, merge sort, then whenever
\[
\sum_{i=0}^{n-1} n_i \log n_i = O(n)
\]
And now for something completely different

Sorting yields complete information re order of input elements

But what if we don’t really need all this information, but perhaps just want to know the value of the k-th smallest element?

Sorting clearly solves this problem, but is there perhaps something faster?

Simple for smallest, 2nd-smallest, k-th smallest for, say, constant k

But what about $n/2$-th smallest? \sqrt{n}-th smallest?

Exact problem formulation:

Input: Set A of n (distinct) numbers and a number $i \in \{1, \ldots, n\}$

Output: Element $x \in A$ that is larger than exactly $i - 1$ other elements of A
We’re going to see $\text{Select}(A, i)$ with \textbf{linear worst-case running time}.

Idea is D&C:

1. Divide n elements into $\lfloor n/5 \rfloor$ groups of 5 elements each, and at most one group containing the remaining $n \mod 5 < 5$ elements.

2. Find median of each of the $\lceil n/5 \rceil$ groups by sorting each one, and then picking median from sorted group elements.

3. Call Select recursively on set of $\lceil n/5 \rceil$ medians found above, giving median-of-medians x.

4. Partition input around x. Let k be $\#$ of elements on low side plus one, so x is k-th smallest element and there are $n - k$ elements on high side of partition.

5. If $i = k$, return x. Otherwise use Select recursively to find i-th smallest element of low side if $i < k$, or $(i - k)$-th smallest on high side if $i > k$.
First question: what’s wrong with basically running Quicksort and disregarding one sub-problem at each recursion step?

Answer: might be that we partition in a bad way and always follow the large sub-problem: $\Omega(n^2)$

Perfect splits result in $\Theta(n)$ (thus randomised version would have expected running time of $O(n)$)

Our somewhat more complicated algorithms guarantees $O(n)$
Observations:

- $n = 5 \cdot 5 + 3 = 28$ elements are circles
- groups are columns
- white circles are medians of groups
- x is median of medians
- arrows from greater to smaller elements: three out of every full group to right of x are greater than x, and three out of every group to left of x are smaller than x (simply because the corresponding medians are greater/smaller than x).
- elements on shaded background are guaranteed to be greater than x
We want lower-bound $\#$ elements greater than x

Know: at least half of medians found in step 2 are greater than x

Thus at least half of $\lceil n/5 \rceil$ groups contribute 3 elements greater than x (excepts for incomplete group, and group containing x)

Disregard these two, and we get

$$3 \left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil - 2 \right) \geq \frac{3n}{10} - 6$$

Same is true for $\#$ elements smaller than x

Thus, in worst case, Select is called recursively on at most

$$n - \left(\frac{3n}{10} - 6 \right) = \frac{7n}{10} + 6$$

elements (step 5): we have just established lower bounds for each partition, and thereby also upper bound.
Steps 1, 2, and 4 take $O(n)$ time each (step 2: $O(n)$ calls to insertion sort on sets of size $O(1)$)

Step 3: time $T(\lceil n/5 \rceil)$

Step 5: time $T(7n/10 + 6)$

Altogether:

$$T(n) \leq \begin{cases}
\Theta(1) & n \leq 140 \\
T(\lceil n/5 \rceil) + T(7n/10 + 6) + O(n) & n > 140
\end{cases}$$

The “140” is black magic...:-)
Want to show that $T(n) \leq cn$ for some constant c

Assume $T(n) \leq cn$ for c large enough and $n \leq 140$ (no problem)

Also, pick constant a s.t. the $O(n)$ term is at most an (non-recursive component)

Now go forth and substitute:

$$T(n) \leq c\lceil n/5 \rceil + c(7n/10 + 6) + an$$
$$\leq cn/5 + c + 7cn/10 + 6c + an$$
$$= 9cn/10 + 7c + an$$
$$= cn + (-cn/10 + 7c + an)$$

Now $T(n) \leq cn$ if and only if

$$-cn/10 + 7c + an \leq 0$$

equivalent to

$$c \geq 10a \frac{n}{n - 70}$$

when $n \geq 70$
Assumption $n \geq 140$, thus $\frac{n}{n-70} \leq 2$, thus choosing $c \geq 20a$ satisfies inequality

Note: for recursion end, any value greater than 70 would to

OK, that's it: $T(n) \leq cn$ for $c \geq 20a$, thus linear running time