Overview of Inference in First-Order Logic

Chapter 9
Outline

- Reducing first-order inference to propositional inference
- Lifting inference in propositional logic to first-order logic.
 - Unification
 - Resolution
Two Approaches for Inference in FOL

Propositionalisation:

• Treat a first-order sentences as a template.
• Instantiating all variables with all possible constants gives a set of ground propositional clauses.
• Apply efficient propositional solver, e.g. SAT.
Two Approaches for Inference in FOL

Propositionalisation:

- Treat a first-order sentences as a template.
- Instantiating all variables with all possible constants gives a set of ground propositional clauses.
- Apply efficient propositional solver, e.g. SAT.

Lifted Inference:

- Generalize propositional methods to 1^{st}-order methods.
- Issue: dealing with variables and quantifiers
- Rule of inference: resolution
- Unification: instantiate variables where necessary.
Propositionalisation

• **Easy case:** A finite world in which all individuals have names
 • E.g. the wumpus world
 • But also many planning, scheduling, etc. problems
Propositionalisation

- **Easy case:** A finite world in which all individuals have names
 - E.g. the wumpus world
 - But also many planning, scheduling, etc. problems
- **Idea:**
 - Replace a universally-quantified sentence with all of its instances
 - Replace an existentially-quantified sentence with a disjunction of its instances

A formula (KB, etc.) with no variables is called ground.

Inference procedure:
- Ground the KB and the query, and
- Run an inference procedure for propositional logic.
Propositionalisation

- **Easy case:** A finite world in which all individuals have names
 - E.g. the wumpus world
 - But also many planning, scheduling, etc. problems
- **Idea:**
 - Replace a universally-quantified sentence with all of its instances
 - Replace an existentially-quantified sentence with a disjunction of its instances
- A formula (KB, etc.) with no variables is called **ground**
- **Inference procedure:**
 - Ground the KB and the query, and
 - run an inference procedure for propositional logic.
• E.g., $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$

yields

\[King(John) \land Greedy(John) \Rightarrow Evil(John) \]
\[King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard) \]
\[King(car_{54}) \land Greedy(car_{54}) \Rightarrow Evil(car_{54}) \]
\[\ldots \]
Existentials

• E.g., $\exists x \; Likes(John, x)$

 yields

 $Likes(John, John) \lor Likes(John, Richard) \lor \cdots \lor Likes(John, car_{54}) \lor \cdots$
Existentials

- E.g., $\exists x \text{ Likes}(\text{John}, x)$

 yields

 $$\text{Likes}(\text{John}, \text{John}) \lor \text{Likes}(\text{John}, \text{Richard}) \lor \cdots \lor \text{Likes}(\text{John}, \text{car}_{54}) \lor \cdots$$

Q: What does “Everyone likes someone” look like?
Reduction to propositional inference

• Suppose the KB contains just the following:
 \[\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x) \]
 King(John), Greedy(John), Brother(Richard, John)

• Instantiating the universal sentence in all possible ways, we get
 King(John) \land Greedy(John) \Rightarrow Evil(John)
 King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
 King(John), Greedy(John), Brother(Richard, John)

• The new KB is propositionalized.

• Proposition symbols are
 King(John),
 Greedy(John),
 Brother(John, Richard),
 Brother(John, John), etc.
Problems with propositionalization

• Usually generates lots of irrelevant sentences.

• E.g., consider:

\[\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x), \]
\[\forall y \ Greedy(y), \]
\[King(John), \quad Brother(Richard, John) \]

• For query Evil(John), propositionalization produces lots of facts (like Greedy(Richard)) that are irrelevant

• \(k \)-ary predicate and \(n \) constants \(\Rightarrow n^k \) instances
Problems with propositionalization

• Usually generates lots of irrelevant sentences.

• E.g., consider:
 \[\forall x \text{King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x), \]
 \[\forall y \text{Greedy}(y), \]
 \[\text{King}(\text{John}), \text{Brother}(\text{Richard}, \text{John}) \]

• For query \text{Evil}(\text{John}), propositionalization produces lots of facts (like \text{Greedy}(\text{Richard})) that are irrelevant

• \(k \)-ary predicate and \(n \) constants \(\Rightarrow n^k \) instances

• However, many recent AI applications use propositionalization for FO KBs over a finite domain.
 • Has led to work in \textit{intelligent grounding}.

• Can make propositionalization work for \textit{arbitrary} FO theories

 See text for more
General FOL: Dealing with Variables

Consider the KB:
\{ ∀x(Grad(x) ⇒ Student(x)),
∀y(Student(y) ⇒ Happy(y)),
Grad(ZeNian),
UGrad(Andrei) \}

- Intuitively Happy(ZeNian) is inferrable.
 - This requires instantiating \(x \) and \(y \) to ZeNian.
- For such a deduction Andrei is irrelevant.

Idea: Try to limit instantiation of variables to useful instances.
Unification

- If two formulas can be made the same by substitutions of variables, they are said to be *unified*.
- Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.
Unification

- If two formulas can be made the same by substitutions of variables, they are said to be *unified*.
- Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.
- Consider:
 \[\forall x (Grad(x) \Rightarrow Student(x)), \quad Grad(ZeNian) \]
Unification

- If two formulas can be made the same by substitutions of variables, they are said to be **unified**
- Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.
- Consider:
 \[\forall x (\text{Grad}(x) \Rightarrow \text{Student}(x)), \quad \text{Grad}(ZeNian) \]
- To obtain \textit{Student(ZeNian)} we have the following steps:
• If two formulas can be made the same by substitutions of variables, they are said to be *unified*.
• Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.
• Consider:
 \[\forall x (\text{Grad}(x) \Rightarrow \text{Student}(x)), \quad \text{Grad}(\text{ZeNian}) \]
• To obtain \text{Student}(\text{ZeNian}) we have the following steps:
 • Figure out how to make \text{Grad}(x) and \text{Grad}(\text{ZeNian}) the same.
 • This is easy: Bind \(x\) to \text{ZeNian}.
Unification

• If two formulas can be made the same by substitutions of variables, they are said to be unified.

• Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.

• Consider:
 \(\forall x (Grad(x) \Rightarrow Student(x)) , \quad Grad(ZeNian) \)

• To obtain \(Student(ZeNian) \) we have the following steps:
 • Figure out how to make \(Grad(x) \) and \(Grad(ZeNian) \) the same.
 • This is easy: Bind \(x \) to \(ZeNian \).
 • Substituting, we get the rule instance:
 \(Grad(ZeNian) \Rightarrow Student(ZeNian) \).
Unification

- If two formulas can be made the same by substitutions of variables, they are said to be **unified**
- Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.
- Consider:
 \[
 \forall x (\text{Grad}(x) \Rightarrow \text{Student}(x)), \quad \text{Grad}(\text{ZeNian})
 \]
- To obtain **Student(ZeNian)** we have the following steps:
 - Figure out how to make $\text{Grad}(x)$ and $\text{Grad}(\text{ZeNian})$ the same.
 - This is easy: Bind x to ZeNian.
 - Substituting, we get the rule instance:
 \[
 \text{Grad}(\text{ZeNian}) \Rightarrow \text{Student(ZeNian)}.
 \]
 - Can now derive **Student(ZeNian)**.
Unification Examples

Look for substitution θ such that $\alpha \theta = \beta \theta$

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Knows(John, x)</code></td>
<td><code>Knows(John, Jane)</code></td>
<td></td>
</tr>
<tr>
<td><code>Knows(John, x)</code></td>
<td><code>Knows(y, OJ)</code></td>
<td></td>
</tr>
<tr>
<td><code>Knows(John, x)</code></td>
<td><code>Knows(y, Mother(y))</code></td>
<td></td>
</tr>
<tr>
<td><code>Knows(John, x)</code></td>
<td><code>Knows(x, OJ)</code></td>
<td></td>
</tr>
</tbody>
</table>
Unification Examples

Look for substitution θ such that $\alpha\theta = \beta\theta$

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(\text{John}, \text{Jane})$</td>
<td>${x/\text{Jane}}$</td>
</tr>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(y, \text{OJ})$</td>
<td></td>
</tr>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(y, \text{Mother}(y))$</td>
<td></td>
</tr>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(x, \text{OJ})$</td>
<td></td>
</tr>
</tbody>
</table>
Unification Examples

Look for substitution θ such that $\alpha \theta = \beta \theta$

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Knows(John, } ! x ! \text{)}$</td>
<td>Knows(John, Jane)</td>
<td>${x/\text{Jane}}$</td>
</tr>
<tr>
<td>$\text{Knows(John, } ! x ! \text{)}$</td>
<td>Knows(y, OJ)</td>
<td>${x/OJ, y/\text{John}}$</td>
</tr>
<tr>
<td>$\text{Knows(John, } ! x ! \text{)}$</td>
<td>$\text{Knows(y, Mother(y))}$</td>
<td></td>
</tr>
<tr>
<td>$\text{Knows(John, } ! x ! \text{)}$</td>
<td>Knows(x, OJ)</td>
<td></td>
</tr>
</tbody>
</table>
Unification Examples

Look for substitution θ such that $\alpha\theta = \beta\theta$

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(\text{John}, \text{Jane})$</td>
<td>${x/\text{Jane}}$</td>
</tr>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(y, \text{OJ})$</td>
<td>${x/\text{OJ}, y/\text{John}}$</td>
</tr>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(y, \text{Mother}(y))$</td>
<td>${y/\text{John}, x/\text{Mother}(\text{John})}$</td>
</tr>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(x, \text{OJ})$</td>
<td></td>
</tr>
</tbody>
</table>
Unification Examples

Look for substitution \(\theta \) such that \(\alpha \theta = \beta \theta \)

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knows(John, (x))</td>
<td>Knows(John, Jane)</td>
<td>{x/Jane}</td>
</tr>
<tr>
<td>Knows(John, (x))</td>
<td>Knows((y), OJ)</td>
<td>{x/OJ, y/John}</td>
</tr>
<tr>
<td>Knows(John, (x))</td>
<td>Knows((y), Mother((y)))</td>
<td>{y/John, (x/Mother(John)}}</td>
</tr>
<tr>
<td>Knows(John, (x))</td>
<td>Knows((x), OJ)</td>
<td>fail</td>
</tr>
</tbody>
</table>

Problem: Can’t substitute both John and OJ for \(x \) at the same time.

Solution: Standardize variables apart:
- Replace \(\text{Knows}(x, OJ) \) with \(\text{Knows}(y, OJ) \)
Reasoning and Unification

- Unification lets us work with both universally quantified variables and arbitrary terms.
- We can use unification in rules such as:
 \[\text{Parent}(x, y) \land \text{Parent}(y, z) \Rightarrow \text{GrandParent}(x, z) \]
 where the variables are taken as being universally quantified.
- Then forward chaining and backward chaining with unification can be defined for such rules.

\[\text{For backward chaining, following one line of development, one ends up with the programming language Prolog.} \]
Resolution: Brief summary

- Resolution can be used in the first-order case (where it forms the basis for much of theorem proving)
- Full first-order version:
 \[\ell_1 \lor C_1, \ell_2 \lor C_2 \quad \text{where} \quad \ell_1 \theta = \neg \ell_2 \theta. \]

- For example,

 \[\neg \text{Rich}(x) \lor \text{Unhappy}(x) \]

 \[\text{Rich}(\text{Ken}) \]

 \[\frac{}{\text{Unhappy}(\text{Ken})} \quad \text{with} \quad \theta = \{x/\text{Ken}\} \]

- For details see the text or CMPT 411.
Inference in FOL

For KB and query α:

- Convert $KB \land \neg \alpha$ to CNF.
 - This is trickier than in propositional logic, since we have to deal with variables and quantifiers.
- Apply resolution steps to $CNF(KB \land \neg \alpha)$
 - No longer guaranteed to terminate if satisfiable
 - FOL is *undecidable*

Complete for FOL
Summary

• Propositionalization
 - Grounding approach: reduce all sentences to PL and apply propositional inference techniques.

• FOL/Lifted inference techniques
 - Propositional techniques + Unification.
 - Generalized Modus Ponens
 - Resolution-based inference.

• Many other aspects of FOL inference not discussed in class