Overview of First-Order Logic

Chapter 8
Outline

• Why FOL?
• Syntax of FOL
• Expressing Sentences in FOL
• Wumpus world in FOL
• Knowledge Engineering
Pros and Cons of Propositional Logic (PC)

Pros:

• PC is *declarative*: formulas correspond to assertions.

• PC allows incomplete information (unlike most data structures and databases)

• PC is *compositional* and *unambiguous*:
 - Truth of $B_1 \land P_1$ depends on truth of B_1 and of P_1.

• Meaning in PC is *context-independent*

 • Unlike natural language: Compare “Bring me the iron”.

 • “iron” could be an instrument for removing creases from clothes, a golf club, a piece of metal,

 • “me” depends on who is doing the talking.
Pros and Cons of Propositional Logic (PC)

Pros:

- PC is *declarative*: formulas correspond to assertions.
- PC allows incomplete information
 (unlike most data structures and databases)
Pros and Cons of Propositional Logic (PC)

Pros:

- PC is *declarative*: formulas correspond to assertions.
- PC allows incomplete information
 (unlike most data structures and databases)
- PC is *compositional* and *unambiguous*:
 - truth of $B_{1,1} \land P_{1,2}$ depends on truth of $B_{1,1}$ and of $P_{1,2}$
Pros and Cons of Propositional Logic (PC)

Pros:

- PC is *declarative*: formulas correspond to assertions.
- PC allows incomplete information (unlike most data structures and databases)
- PC is *compositional* and *unambiguous*:
 - truth of $B_{1,1} \land P_{1,2}$ depends on truth of $B_{1,1}$ and of $P_{1,2}$
- Meaning in PC is *context-independent*
 - Unlike natural language: Compare “Bring me the iron”.
 - “iron” could be an instrument for removing creases from clothes, a golf club, a piece of metal,
 - “me” depends on who is doing the talking.
Pros and Cons of PC

Cons:

• PC has limited expressive power
 • E.g., cannot say “pits cause breezes in adjacent squares” except by writing one sentence for each square
First-order logic

• Propositional logic assumes the world is described by facts.
First-order logic

- Propositional logic assumes the world is described by *facts*.
- First-order logic assumes the world contains:
 - Objects: E.g. people, houses, numbers, colors, hockey games, purchases, ...
 - Relations: E.g. red, round, honest, prime, brother of, bigger than, likes, occurred after, owns, comes between, ...
 - Functions: E.g. father of, best friend, plus, ...
First-order logic

- Propositional logic assumes the world is described by *facts*.
- First-order logic assumes the world contains:

 Objects: E.g. people, houses, numbers, colors, hockey games, purchases, . . .

 - Think of nouns in a natural language
First-order logic

- Propositional logic assumes the world is described by *facts*.
- First-order logic assumes the world contains:

 Objects: E.g. people, houses, numbers, colors, hockey games, purchases, . . .

 - Think of nouns in a natural language

 Relations: E.g. red, round, honest, prime, . . . , brother of, bigger than, likes, occurred after, owns, comes between, . . .
First-order logic

- Propositional logic assumes the world is described by \textit{facts}.
- First-order logic assumes the world contains:

 \textbf{Objects:} E.g. people, houses, numbers, colors, hockey games, purchases, \ldots

 - Think of nouns in a natural language

 \textbf{Relations:} E.g. red, round, honest, prime, \ldots, brother of, bigger than, likes, occurred after, owns, comes between, \ldots

 \textbf{Functions:} E.g. father of, best friend, plus, \ldots
Aside: Logics in General

There are lots of logics:

<table>
<thead>
<tr>
<th>Logic</th>
<th>Ontological Commitment</th>
<th>Epistemological Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional logic</td>
<td>facts</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>First-order logic</td>
<td>facts, objects, relations</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Temporal logic</td>
<td>facts, objects, relations, times</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Probability theory</td>
<td>facts</td>
<td>degree of belief</td>
</tr>
<tr>
<td>Fuzzy logic</td>
<td>facts + degree of truth</td>
<td>fuzzy values</td>
</tr>
<tr>
<td>Relevance logic</td>
<td>facts</td>
<td>true/false/unknown/inconsistent</td>
</tr>
<tr>
<td>Modal logic (logic of beliefs)</td>
<td>facts, possible worlds</td>
<td>true/false/unknown + necessarily t/f/unkn</td>
</tr>
<tr>
<td>Description logic</td>
<td>concepts, roles, objects</td>
<td>true/false/unknown</td>
</tr>
</tbody>
</table>

...and lots of others!
Syntax of FOL: Basic Elements

- Constants:
 - Stand for objects
 - May be abstract – e.g. a marriage or a purchase
Syntax of FOL: Basic Elements

- **Constants:**
 - Stand for objects
 - May be abstract – e.g. a marriage or a purchase

- **Predicate symbols:**
 - Stand for properties, relations
Syntax of FOL: Basic Elements

- **Constants:**
 - Stand for objects
 - May be abstract – e.g. a marriage or a purchase

- **Predicate symbols:**
 - Stand for properties, relations

- **Functions:**
 - Stand for functions
 - E.g. *Sqrt*, *LeftLegOf*(John), . . .
Syntax of FOL: Basic Elements

- Constants: \textit{Wumpus}, 2, \textit{SFU}, \ldots
- Predicates: \textit{Brother}, \textit{Plus}, \ldots
- Functions: \textit{Sqrt}, \textit{LeftLegOf}, \ldots
- Variables: \(x, y, \ldots\)
- Connectives: \(\land, \lor, \neg, \Rightarrow, \equiv\)
- Equality: \(=\)
- Quantifiers: \(\forall, \exists\)

And, strictly speaking, there is punctuation: “(”, “)”, “,”.
Terms and Atomic Sentences

Basic idea with FOL:

- There are *objects* or *things* in the domain being described.
 - *Terms* in the language denote objects.
 - E.g. *JohnQSmith*, 12, *CMPT310*, *favouriteCatOf*(John), ...

- There are *assertions* concerning these objects.
 - *Assertions* are expressed by *formulas*.
 - E.g. *Student*(JohnQSmith), *favouriteCatOf*(John) = *Fluffy*, ∀x. *BCUniv*(x) ⇒ (¬*HasMedSchool*(x) ∨ x = *UBC*)

And that's it!
Terms and Atomic Sentences

Basic idea with FOL:

- There are *objects* or *things* in the domain being described.
 - *Terms* in the language denote objects.
 - E.g. *JohnQSmith*, 12, *CMPT310*, *favouriteCatOf*(John), ...
- There are *assertions* concerning these objects.
 - Assertions are expressed by *formulas*.
 - E.g. *Student*(JohnQSmith),
 favouriteCatOf(John) = Fluffy,
 \(\forall x. \text{BCUniv}(x) \Rightarrow (\neg \text{HasMedSchool}(x) \vee x = UBC) \)

And that’s it!
Terms

- *Term* = logical expression that refers to an object.
Terms

- **Term** = logical expression that refers to an object.

 A term can be:
 - a constant, such as *Chris*, *car*$_{54}$, . . .
 - a function application such as *LeftLegOf*(*Richard*), *Sqrt*(2), *Sqrt*(*Sqrt*(2))), . . .

 A term can contain variables
 - When we get to formulas, we’ll want variables to be *quantified*

- A term with no variables is called **ground**
Atomic Sentences

- An atomic sentences is the simplest sentence that can be true or false.

Examples of atomic sentences:
- `Likes(Arvind, ZeNian)` could be true or false.
- `BrotherOf(Mary, Sue)` is false (for normal understanding of `BrotherOf`).
- `Married(FatherOf(Richard), MotherOf(John))` could be true or false.
- There may be more than one way to express something. Compare: `MotherOf(John, Sue)` vs. `Sue = MotherOf(John)`.

Atomic Sentences

- An **atomic sentences** is the simplest sentence that can be **true** or **false**.
- An atomic sentence is of the form \(\text{predicate}(\text{term}_1, \ldots, \text{term}_n)\) or \(\text{term}_1 = \text{term}_2\)
- Example atomic sentences (and terms):
 - \(\text{Likes}(\text{Arvind}, \text{ZeNian})\) could be true or false
 - \(\text{BrotherOf}(\text{Mary}, \text{Sue})\) is false (for normal understanding of \(\text{BrotherOf}, \text{Mary}, \text{Sue}\))
 - \(\text{Married}(\text{FatherOf}(\text{Richard}), \text{MotherOf}(\text{John}))\) could be true or false.
- There may be more than one way to express something. Compare:
 - \(\text{MotherOf}(\text{John}, \text{Sue})\) — predicate vs. \(\text{Sue} = \text{MotherOf}(\text{John})\) — function.
Complex Sentences

- Complex sentences are made from atomic sentences using the connectives of propositional logic:
 \(\neg S, (S_1 \land S_2), (S_1 \lor S_2), (S_1 \Rightarrow S_2), (S_1 \equiv S_2) \)

- Examples:
 - \(\text{Red(car54)} \land \neg \text{Red(car54)} \)
 - \(\text{Sibling(Joe, Alice)} \Rightarrow \text{Sibling(Alice, Joe)} \)
 - \(\text{King(Richard)} \lor \text{King(John)} \)
 - \(\text{King(Richard)} \Rightarrow \neg \text{King(John)} \)
 - \(\text{Purchase(p)} \land \text{Buyer(p)} = \text{John} \land \text{ObjectType(p)} = \text{Bike} \)

- Semantics is the same as in propositional logic
Complex Sentences

- Complex sentences are made from atomic sentences using the connectives of propositional logic:
 \(\neg S, \ (S_1 \land S_2), \ (S_1 \lor S_2), \ (S_1 \Rightarrow S_2), \ (S_1 \equiv S_2) \)
- Examples:
 - \(Red(car_{54}) \land \neg Red(car_{54}) \)
Complex Sentences

- Complex sentences are made from atomic sentences using the connectives of propositional logic:
 \[\neg S, (S_1 \land S_2), (S_1 \lor S_2), (S_1 \Rightarrow S_2), (S_1 \equiv S_2) \]
- Examples:
 - \[Red(car_{54}) \land \neg Red(car_{54}) \]
 - \[Sibling(Joe, Alice) \Rightarrow Sibling(Alice, Joe) \]
Complex Sentences

- Complex sentences are made from atomic sentences using the connectives of propositional logic:
 \(-S, (S_1 \land S_2), (S_1 \lor S_2), (S_1 \Rightarrow S_2), (S_1 \equiv S_2)\)
- Examples:
 - \(Red(car_{54}) \land \neg Red(car_{54})\)
 - \(Sibling(Joe, Alice) \Rightarrow Sibling(Alice, Joe)\)
 - \(King(Richard) \lor King(John)\)
 - \(King(Richard) \Rightarrow \neg King(John)\)
 - \(Purchase(p) \land \)
 \(Buyer(p) = John \land \)
 \(ObjectType(p) = Bike\)
- Semantics is the same as in propositional logic
• *Student*(John) is true or false and says something about a specific individual, John.

• We can be much more flexible if we allow variables which can range over elements of the domain.
Variables

- *Student*(John) is true or false and says something about a specific individual, John.
- We can be much more flexible if we allow variables which can range over elements of the domain.
- Now allow sentences of the form:
 \((\forall x \ S), \ (\exists x \ S)\)
 - \((\forall x \ S)\) is true if, no matter what \(x\) refers to, \(S\) is true.
 - \((\exists x \ S)\) is true if there is some element of the domain for which \(S\) is true.
Universal Quantification

Form: $\forall \langle variables \rangle \langle sentence \rangle$

- Allows us to make statements about all objects that have certain properties.
- Everyone at SFU is smart: $\forall x \ At(x, SFU) \Rightarrow Smart(x)$
Universal Quantification

Form: $\forall \langle variables \rangle \langle sentence \rangle$

- Allows us to make statements about all objects that have certain properties.
- Everyone at SFU is smart: $\forall x \ At(x, SFU) \Rightarrow Smart(x)$
- Every number has a successor:
 $\forall x \ NNum(x) \Rightarrow NNum(Succ(x))$
Universal Quantification

Form: $\forall\langle variables\rangle\langle sentence\rangle$

- Allows us to make statements about all objects that have certain properties.
- Everyone at SFU is smart: $\forall x \ At(x, SFU) \Rightarrow Smart(x)$
- Every number has a successor:
 $\forall x \ NNum(x) \Rightarrow NNum(Succ(x))$
- For a finite, known domain, equivalent to the conjunction of instantiations of P

 $\left(At(Joe, SFU) \Rightarrow Smart(Joe) \right) \land \left(At(Alice, SFU) \Rightarrow Smart(Alice) \right) \land \left(At(SFU, SFU) \Rightarrow Smart(SFU) \right) \land \ldots$

- Formulas are finite in length, so universal quantification in general can’t be expressed as a big conjunction.
A common mistake to avoid

- Typically, ⇒ is the main connective with ∀
- Common mistake: using ∧ as the main connective with ∀:

\[\forall x(At(x, SFU) \land Smart(x)) \]

means

"Everyone is at SFU and everyone is smart"

and not

"Everyone at SFU is smart".
Existential Quantification

Form: \(\exists \langle \text{variables} \rangle \langle \text{sentence} \rangle \)

- Allows us to make a statement about an object without naming it.
- Someone at UVic is smart: \(\exists x (At(x, \text{UVic}) \land Smart(x)) \)

- Someone at SFU is smart: \(\exists x (At(x, \text{SFU}) \land Smart(x)) \)
Existential Quantification

Form: $\exists \langle variables \rangle \langle sentence \rangle$

- Allows us to make a statement about an object without naming it.
- Someone at UVic is smart: $\exists x (At(x, UVic) \land Smart(x))$
- There is a SFU student with a top GPA:
Existential Quantification

Form: $\exists \langle variables \rangle \langle sentence \rangle$

- Allows us to make a statement about an object without naming it.
- Someone at UVic is smart: $\exists x (At(x, UVic) \land Smart(x))$
- There is a SFU student with a top GPA:
 $\exists x (Student(x) \land \forall y (Student(y) \Rightarrow GE(GPA(x), GPA(y))))$
Existential Quantification

Form: $\exists \langle variables \rangle \langle sentence \rangle$

- Allows us to make a statement about an object without naming it.
- Someone at UVic is smart: $\exists x(At(x, UVic) \land Smart(x))$
- There is a SFU student with a top GPA:
 $\exists x(Student(x) \land \forall y(Student(y) \Rightarrow GE(GPA(x), GPA(y))))$
- For a finite, known domain, equivalent to the disjunction of instantiations of P

 $\ (At(Joe, UVic) \land Smart(Joe)) \lor
 (At(Alice, UVic) \land Smart(Alice)) \lor
 (At(SFU, UVic) \land Smart(SFU)) \lor \ldots$

- But again, we cannot have an infinite disjunction and may have unknown individuals!
Another common mistake to avoid

- Typically, \land is the main connective with \exists
- Common mistake: Using \Rightarrow as the main connective with \exists:

$$\exists x (At(x, UVic) \Rightarrow Smart(x))$$

is true if (among other possibilities) there is someone who is not at UVic!

- On the other hand:

$$\exists x (At(x, UVic) \land Smart(x))$$

is true if there is someone who is at UVic and is smart.
Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
Properties of Quantifiers

• $\forall x \forall y$ is the same as $\forall y \forall x$
• $\exists x \exists y$ is the same as $\exists y \exists x$
• $\exists x \forall y$ is not the same as $\forall y \exists x$:
Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$:
 - $\exists x \forall y \text{ Likes}(x, y)$
 - “There is a person who likes everyone”
 - $\forall y \exists x \text{ Likes}(x, y)$
 - “Everyone is liked by at least one person”
Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$:
 - $\exists x \forall y \text{ Likes}(x, y)$
 “There is a person who likes everyone”
 - $\forall y \exists x \text{ Likes}(x, y)$
 “Everyone is liked by at least one person”

- **Quantifier duality**: each can be expressed using the other
 - $\forall x \text{ Likes}(x, \text{ IceCream}) \equiv \neg \exists x \neg \text{ Likes}(x, \text{ IceCream})$
 - $\exists x \text{ Likes}(x, \text{ Broccoli}) \equiv \neg \forall x \neg \text{ Likes}(x, \text{ Broccoli})$

 recalled Like De Morgan’s Rule
Expressing Sentences in FOL

- Brothers are siblings
Expressing Sentences in FOL

- Brothers are siblings
 \[\forall x, y \ (\text{Brother}(x, y) \Rightarrow \text{Sibling}(x, y)) \].

- “Sibling” is symmetric
 \[\forall x, y \ (\text{Sibling}(x, y) \equiv \text{Sibling}(y, x)) \].

- One’s mother is one’s female parent
 \[\forall x, y \ (\text{Mother}(x, y) \equiv (\text{Female}(x) \land \text{Parent}(x, y))) \].

- A first cousin is a child of a parent’s sibling
 \[\forall x, y \ (\text{FirstCousin}(x, y) \equiv \exists p, ps \ (\text{Parent}(p, x) \land \text{Sibling}(ps, p) \land \text{Parent}(ps, y))) \].
Expressing Sentences in FOL

• Brothers are siblings
 \[\forall x, y (\text{Brother}(x, y) \Rightarrow \text{Sibling}(x, y)) \].

• “Sibling” is symmetric
Expressing Sentences in FOL

- Brothers are siblings
 \[\forall x, y \ (\text{Brother}(x, y) \Rightarrow \text{Sibling}(x, y)). \]

- “Sibling” is symmetric
 \[\forall x, y \ (\text{Sibling}(x, y) \equiv \text{Sibling}(y, x)). \]
Expressing Sentences in FOL

• Brothers are siblings
 \[\forall x, y \ (\text{Brother}(x, y) \Rightarrow \text{Sibling}(x, y)). \]

• “Sibling” is symmetric
 \[\forall x, y \ (\text{Sibling}(x, y) \equiv \text{Sibling}(y, x)). \]

• One’s mother is one’s female parent
Expressing Sentences in FOL

- Brothers are siblings
 \(\forall x, y (\text{Brother}(x, y) \implies \text{Sibling}(x, y)). \)

- “Sibling” is symmetric
 \(\forall x, y (\text{Sibling}(x, y) \equiv \text{Sibling}(y, x)). \)

- One’s mother is one’s female parent
 \(\forall x, y (\text{Mother}(x, y) \equiv (\text{Female}(x) \land \text{Parent}(x, y))). \)
Expressing Sentences in FOL

- Brothers are siblings
 \(\forall x, y \ (\text{Brother}(x, y) \Rightarrow \text{Sibling}(x, y)) \).

- “Sibling” is symmetric
 \(\forall x, y \ (\text{Sibling}(x, y) \equiv \text{Sibling}(y, x)) \).

- One’s mother is one’s female parent
 \(\forall x, y \ (\text{Mother}(x, y) \equiv (\text{Female}(x) \land \text{Parent}(x, y))) \).

- A first cousin is a child of a parent’s sibling
Expressing Sentences in FOL

- Brothers are siblings
 \[\forall x, y \ (\text{Brother}(x, y) \Rightarrow \text{Sibling}(x, y)) \] .

- “Sibling” is symmetric
 \[\forall x, y \ (\text{Sibling}(x, y) \equiv \text{Sibling}(y, x)) \] .

- One’s mother is one’s female parent
 \[\forall x, y \ (\text{Mother}(x, y) \equiv (\text{Female}(x) \land \text{Parent}(x, y))) \] .

- A first cousin is a child of a parent’s sibling
 \[\forall x, y \ (\text{FirstCousin}(x, y) \equiv \\
 \exists p, ps \ (\text{Parent}(p, x) \land \text{Sibling}(ps, p) \land \text{Parent}(ps, y))) \] .
Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes ambiguity.

- Compare: “sibling is symmetric” and “a brother is a sibling”.

\[
\forall x, y (\text{Sibling}(x, y) \equiv \text{Sibling}(y, x))
\]
\[
\forall x, y (\text{Brother}(x, y) \implies \text{Sibling}(x, y))
\]
\[
\forall x (\text{Dog}(x) \implies \text{Mammal}(x))
\]
\[
\text{Student}(\text{Anne})
\]
Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes ambiguity.

- Compare: “sibling is symmetric” and “a brother is a sibling”.
 \[
 \forall x, y(Sibling(x, y) \equiv Sibling(y, x)) \\
 \forall x, y(Brother(x, y) \Rightarrow Sibling(x, y))
 \]
Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes ambiguity.

• Compare: “sibling is symmetric” and “a brother is a sibling”.
 \[\forall x, y (\text{Sibling}(x, y) \equiv \text{Sibling}(y, x)) \]
 \[\forall x, y (\text{Brother}(x, y) \Rightarrow \text{Sibling}(x, y)) \]

• Compare: “a dog is a mammal” and “Anne is a student”.
 \[\forall x (\text{Dog}(x) \Rightarrow \text{Mammal}(x)) \]
 \[\text{Student}(\text{Anne}) \]
Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes ambiguity.

- Compare: “sibling is symmetric” and “a brother is a sibling”.
 \[
 \forall x, y (\text{Sibling}(x, y) \equiv \text{Sibling}(y, x))
 \]
 \[
 \forall x, y (\text{Brother}(x, y) \Rightarrow \text{Sibling}(x, y))
 \]

- Compare: “a dog is a mammal” and “Anne is a student”.
 \[
 \forall x (\text{Dog}(x) \Rightarrow \text{Mammal}(x))
 \]
 \[
 \text{Student}(\text{Anne})
 \]
Equality

• $t_1 = t_2$ is true iff t_1 and t_2 refer to the same object
• $t_1 = t_2$ is true iff t_1 and t_2 refer to the same object

• E.g., definition of $Sibling$ in terms of $Parent$:

$$\forall x, y \ Sibling(x, y) \equiv \neg(x = y) \land \exists m, f \ (\neg(m = f) \land \neg((x = m) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)))$$
Equality

- \(t_1 = t_2 \) is true iff \(t_1 \) and \(t_2 \) refer to the same object
- E.g., definition of \(Sibling \) in terms of \(Parent \):
 \[
 \forall x, y \; Sibling(x, y) \equiv [\neg(x = y) \land \exists m, f \; (\neg(m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y))]\]
Equality

Don’t confuse \equiv and \approx.
Equality

Don’t confuse \equiv and \equiv.

- $\alpha \equiv \beta$ says that α and β have the same truth value
 - \equiv is a relation between formulas
 - E.g. $a \land b \equiv b \land a$.
Don’t confuse \equiv and $=.$

- $\alpha \equiv \beta$ says that α and β have the same truth value
 - \equiv is a relation between formulas
 - E.g. $a \land b \equiv b \land a.$
- $t_1 = t_2$ says that t_1 and t_2 refer to the same individual
 - $=$ is a relation between terms
 - E.g. $\text{CapitalOf}(BC) = \text{Victoria}.$
Interacting with FOL KBs

- An agent needs to interact with its KB.
- Regarding a KB as an ADT, there are two primary operations, *TELL* and *ASK*.

\[\text{TELL}(KB, \forall x (\text{Grad}(x) \Rightarrow \text{Student}(x))) \]

\[\text{TELL}(KB, \text{Grad}(\text{Alice})) \]

These sentences are assertions.

\[\text{ASK}(KB, \exists x \text{Student}(x)) \]

These are queries or goals.

The KB should output \(x \) where \(\text{Student}(x) \) is true:

\{ \(x \) / Alice, ... \}
Interacting with FOL KBs

- An agent needs to interact with its KB.
- Regarding a KB as an ADT, there are two primary operations, \textit{TELL} and \textit{ASK}.
- We want to \textit{TELL} things to the KB, e.g.
 \[
 TELL(KB, \forall x (Grad(x) \Rightarrow Student(x)))
 \]
 \[
 TELL(KB, Grad(Alice))
 \]
- These sentences are \textit{assertions}
Interacting with FOL KBs

- An agent needs to interact with its KB.
- Regarding a KB as an ADT, there are two primary operations, TELL and ASK.
- We want to TELL things to the KB, e.g.
 \[TELL(KB, \forall x(\text{Grad}(x) \Rightarrow \text{Student}(x))) \]
 \[TELL(KB, \text{Grad}(\text{Alice})) \]
 - These sentences are assertions
- We also want to ASK things of a KB,
 \[ASK(KB, \exists x \text{ Student}(x)) \]
 - These are queries or goals
 - The KB should output \(x \) where \(\text{Student}(x) \) is true:
 \[\{x/\text{Alice}, \ldots \} \]
Interacting with FOL KBs: The Wumpus World

• Suppose a wumpus-world agent is using a FOL KB and perceives a smell and a breeze (but no glitter) at $t = 5$:
Suppose a wumpus-world agent is using a FOL KB and perceives a smell and a breeze (but no glitter) at $t = 5$:

Express by the percept sentence:

$\text{Tell}(KB, \text{Percept}([\text{Smell}, \text{Breeze}, \text{None}, \text{None}, \text{None}, \text{None}], 5))$
Interacting with FOL KBs: The Wumpus World

• Suppose a wumpus-world agent is using a FOL KB and perceives a smell and a breeze (but no glitter) at $t = 5$:

• Express by the percept sentence:

 $Tell(KB, Percept([\text{Smell, Breeze, None, None, None}], 5))$

• Then:

 $Ask(KB, \exists a \text{Action}(a, 5))$

 • I.e., does KB entail any particular actions at $t = 5$?
 • Ask solves this and returns $\{a/\text{Shoot}\}$
Knowledge in the Wumpus World

• Need to specify axioms about the wumpus world; for example:

• “Perception to knowledge”
 \[\forall b, g, t, m, c \ Percept([\text{Smell}, b, g, m, c], t) \Rightarrow \text{Smelt}(t) \]
 \[\forall s, b, t, m, c \ Percept([s, b, \text{Glitter}, m, c], t) \Rightarrow \text{AtGold}(t) \]

 Aside: Must keep track of time, and so \(\text{Smelt}(t) \).
Knowledge in the Wumpus World

• Need to specify axioms about the wumpus world; for example:

• "Perception to knowledge"
 \[\forall b, g, t, m, c \ \text{Percept}([\text{Smell}, b, g, m, c], t) \Rightarrow \text{Smelt}(t) \]
 \[\forall s, b, t, m, c \ \text{Percept}([s, b, \text{Glitter}, m, c], t) \Rightarrow \text{AtGold}(t) \]

 Aside: Must keep track of time, and so \text{Smelt}(t).

• Reflex action: \[\forall t \ \text{AtGold}(t) \Rightarrow \text{Action(Grab, } t) \]
Knowledge in the Wumpus World

- Need to specify axioms about the wumpus world; for example:

 “Perception to knowledge”
 \[
 \forall b, g, t, m, c \: \text{Percept}([\text{Smell}, b, g, m, c], t) \Rightarrow \text{Smelt}(t)
 \]
 \[
 \forall s, b, t, m, c \: \text{Percept}([s, b, \text{Glitter}, m, c], t) \Rightarrow \text{AtGold}(t)
 \]

 Aside: Must keep track of time, and so \text{Smelt}(t).

- Reflex action: \(\forall t \: \text{AtGold}(t) \Rightarrow \text{Action}(\text{Grab}, t) \)

- Reflex action with internal state:
 Do we have the gold already?
 \[
 \forall t \: \text{AtGold}(t) \wedge \neg \text{Holding}(\text{Gold}, t) \Rightarrow \text{Action}(\text{Grab}, t)
 \]
Knowledge in the Wumpus World

- Need to specify axioms about the wumpus world; for example:
 - “Perception to knowledge”
 \[\forall b, g, t, m, c \text{ Percept}([\text{Smell}, b, g, m, c], t) \Rightarrow \text{Smelt}(t) \]
 \[\forall s, b, t, m, c \text{ Percept}([s, b, \text{Glitter}, m, c], t) \Rightarrow \text{AtGold}(t) \]
 - Aside: Must keep track of time, and so \(\text{Smelt}(t)\).
 - Reflex action: \(\forall t \text{ AtGold}(t) \Rightarrow \text{Action} (\text{Grab}, t)\)
 - Reflex action with internal state:
 Do we have the gold already?
 \[\forall t \text{ AtGold}(t) \land \neg \text{Holding}(\text{Gold}, t) \Rightarrow \text{Action} (\text{Grab}, t) \]
 - Note that \(\text{Holding} (\text{Gold}, t)\) cannot be observed
 - must keep track of change
Knowledge in the Wumpus World

- Need to specify axioms about the wumpus world; for example:
- "Perception to knowledge"
 \[\forall b, g, t, m, c \text{ Percept}([\text{Smell}, b, g, m, c], t) \Rightarrow \text{Smelt}(t) \]
 \[\forall s, b, t, m, c \text{ Percept}([s, b, \text{Glitter}, m, c], t) \Rightarrow \text{AtGold}(t) \]

 Aside: Must keep track of time, and so \(\text{Smelt}(t)\).

- Reflex action: \(\forall t \text{ AtGold}(t) \Rightarrow \text{Action(Grab, t)}\)

- Reflex action with internal state:
 Do we have the gold already?
 \[\forall t \text{ AtGold}(t) \wedge \neg \text{Holding(Gold, t)} \Rightarrow \text{Action(Grab, t)} \]

- Note that \(\text{Holding(Gold, t)}\) cannot be observed
 must keep track of change

- Q: If we know \(\text{Holding(Gold, t)}\) can we conclude \(\text{Holding(Gold, t + 1)}\)?
Knowledge in the Wumpus World

• Need to specify axioms about the wumpus world; for example:

 • “Perception to knowledge”
 \[\forall b, g, t, m, c \ Percept([\text{Smell}, b, g, m, c], t) \Rightarrow \text{Smelt}(t) \]
 \[\forall s, b, t, m, c \ Percept([s, b, \text{Glitter}, m, c], t) \Rightarrow \text{AtGold}(t) \]

 ❨ Aside: Must keep track of time, and so \text{Smelt}(t). ❩

• Reflex action: \[\forall t \ AtGold(t) \Rightarrow \text{Action(Grab, t)} \]

• Reflex action with internal state:
 Do we have the gold already?
 \[\forall t \ AtGold(t) \land \neg \text{Holding(Gold, t)} \Rightarrow \text{Action(Grab, t)} \]

• Note that \text{Holding(Gold, t)} cannot be observed
 ❨ must keep track of change ❩

• Q: If we know \text{Holding(Gold, t)} can we conclude \text{Holding(Gold, t + 1)}?
 • Ans: No
Representing Information

- Need to remember properties of locations:
 \[\forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x) \]
 \[\forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x) \]
- Need to be careful that \textit{all} information is represented. Consider “Squares are breezy near a pit”:

Representing Information

- Need to remember properties of locations:
 \[\forall x, t \ At(Agent, x, t) \land \text{Smelt}(t) \Rightarrow \text{Smelly}(x) \]
 \[\forall x, t \ At(Agent, x, t) \land \text{Breeze}(t) \Rightarrow \text{Breezy}(x) \]

- Need to be careful that \textit{all} information is represented. Consider “Squares are breezy near a pit”:
 - \textit{Diagnostic} rule – infer cause from effect
 \[\forall y \ \text{Breezy}(y) \Rightarrow \exists x \text{Pit}(x) \land \text{Adjacent}(x, y) \]
 - \textit{Causal} rule – infer effect from cause
 \[\forall x, y \ \text{Pit}(x) \land \text{Adjacent}(x, y) \Rightarrow \text{Breezy}(y) \]
Representing Information

- Need to remember properties of locations:
 \[\forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x) \]
 \[\forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x) \]

- Need to be careful that \textit{all} information is represented. Consider “Squares are breezy near a pit”:
 - \textit{Diagnostic} rule – infer cause from effect
 \[\forall y \ Breezy(y) \Rightarrow \exists x Pit(x) \land \text{Adjacent}(x, y) \]
 - \textit{Causal} rule – infer effect from cause
 \[\forall x, y Pit(x) \land \text{Adjacent}(x, y) \Rightarrow Breezy(y) \]

- Neither of these is complete – e.g., the causal rule doesn’t say whether squares far away from pits can be breezy

- \textit{Definition} for the \textit{Breezy} predicate:
 \[\forall y \ Breezy(y) \equiv [\exists x Pit(x) \land \text{Adjacent}(x, y)] \]
Knowledge Engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base.

Aside: This is pretty much the same as designing a database schema + instance.
Knowledge Engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base.

Aside: This is pretty much the same as designing a database schema + instance.
The Electronic Circuits Domain

Full Adder

1

2

3

X1

X2

A2

A1

O1
1. Identify the task
The Electronic Circuits Domain

1. Identify the task
 • What is known about input/output values, given other input/output values?

2. Assemble the relevant knowledge
 • Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 • Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
 • Different possibilities:
 • Function:
 Type \((X_1) = \text{XOR}\)
 • Binary predicate:
 Type \((X_1, \text{XOR})\)
 • Unary predicate:
 \(\text{XOR}(X_1)\)
The Electronic Circuits Domain

1. Identify the task
 • What is known about input/output values, given other input/output values?

2. Assemble the relevant knowledge
The Electronic Circuits Domain

1. Identify the task
 • What is known about input/output values, given other input/output values?

2. Assemble the relevant knowledge
 • Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 • Irrelevant: size, shape, color, cost of gates
The Electronic Circuits Domain

1. Identify the task
 • What is known about input/output values, given other input/output values?

2. Assemble the relevant knowledge
 • Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 • Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
The Electronic Circuits Domain

1. Identify the task
 - What is known about input/output values, given other input/output values?

2. Assemble the relevant knowledge
 - Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 - Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
 - Different possibilities:
 - Function: $Type(X_1) = XOR$
 - Binary predicate: $Type(X_1, XOR)$
 - Unary predicate: $XOR(X_1)$
The Electronic Circuits Domain

4. Encode general knowledge of the domain:
The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- \(\forall p_1, p_2 \) \(\text{Connected}(p_1, p_2) \Rightarrow \text{Signal}(p_1) = \text{Signal}(p_2) \)
4. Encode general knowledge of the domain:

- \(\forall p_1, p_2 \) Connected\((p_1, p_2) \) \(\Rightarrow \) Signal\((p_1) = \) Signal\((p_2) \)
- \(\forall p \) Signal\((p) = 1 \) \(\lor \) Signal\((p) = 0 \)
4. Encode general knowledge of the domain:

- $\forall p_1, p_2 \, \text{Connected}(p_1, p_2) \Rightarrow \text{Signal}(p_1) = \text{Signal}(p_2)$
- $\forall p \, \text{Signal}(p) = 1 \lor \text{Signal}(p) = 0$
- $1 \neq 0$
The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- \(\forall p_1, p_2 \ \text{Connected}(p_1, p_2) \Rightarrow \text{Signal}(p_1) = \text{Signal}(p_2) \)
- \(\forall p \ \text{Signal}(p) = 1 \lor \text{Signal}(p) = 0 \)
- \(1 \neq 0 \)
- \(\forall p_1, p_2 \ \text{Connected}(p_1, p_2) \Rightarrow \text{Connected}(p_2, p_1) \)
The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- $\forall p_1, p_2 \text{ Connected}(p_1, p_2) \Rightarrow \text{Signal}(p_1) = \text{Signal}(p_2)$
- $\forall p \text{ Signal}(p) = 1 \lor \text{Signal}(p) = 0$
- $1 \neq 0$
- $\forall p_1, p_2 \text{ Connected}(p_1, p_2) \Rightarrow \text{Connected}(p_2, p_1)$
- $\forall g \text{ Type}(g) = \text{OR} \Rightarrow$
 $\text{Signal}(\text{Out}(1, g)) = 1 \equiv \exists n \text{ Signal}(\text{In}(n, g)) = 1$
The Electronic Circuits Domain

4. Encode general knowledge of the domain:

• $\forall p_1, p_2 \; \text{Connected}(p_1, p_2) \Rightarrow \text{Signal}(p_1) = \text{Signal}(p_2)$
• $\forall p \; \text{Signal}(p) = 1 \lor \text{Signal}(p) = 0$
• $1 \neq 0$
• $\forall p_1, p_2 \; \text{Connected}(p_1, p_2) \Rightarrow \text{Connected}(p_2, p_1)$
• $\forall g \; \text{Type}(g) = \text{OR} \Rightarrow$
 $\text{Signal}(\text{Out}(1, g)) = 1 \equiv \exists n \; \text{Signal}(\text{In}(n, g)) = 1$
• $\forall g \; \text{Type}(g) = \text{AND} \Rightarrow$
 $\text{Signal}(\text{Out}(1, g)) = 0 \equiv \exists n \; \text{Signal}(\text{In}(n, g)) = 0$
The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- \(\forall p_1, p_2 \) Connected\((p_1, p_2) \Rightarrow Signal(p_1) = Signal(p_2) \)
- \(\forall p \) Signal\((p) = 1 \lor Signal(p) = 0 \)
- \(1 \neq 0 \)
- \(\forall p_1, p_2 \) Connected\((p_1, p_2) \Rightarrow Connected(p_2, p_1) \)
- \(\forall g \) Type\((g) = OR \Rightarrow \)
 \[Signal(Out(1, g)) = 1 \equiv \exists n \ Signal(In(n, g)) = 1 \]
- \(\forall g \) Type\((g) = AND \Rightarrow \)
 \[Signal(Out(1, g)) = 0 \equiv \exists n \ Signal(In(n, g)) = 0 \]
- \(\forall g \) Type\((g) = XOR \Rightarrow \)
 \[Signal(Out(1, g)) = 1 \equiv Signal(In(1, g)) \neq Signal(In(2, g)) \]
The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- \(\forall p_1, p_2 \) Connected\((p_1, p_2) \Rightarrow \text{Signal}(p_1) = \text{Signal}(p_2) \)
- \(\forall p \) Signal\((p) = 1 \lor \text{Signal}(p) = 0 \)
- \(1 \neq 0 \)
- \(\forall p_1, p_2 \) Connected\((p_1, p_2) \Rightarrow \text{Connected}(p_2, p_1) \)
- \(\forall g \) Type\((g) = \text{OR} \Rightarrow \)
 \quad \text{Signal}(\text{Out}(1, g)) = 1 \equiv \exists n \text{Signal}(\text{In}(n, g)) = 1 \)
- \(\forall g \) Type\((g) = \text{AND} \Rightarrow \)
 \quad \text{Signal}(\text{Out}(1, g)) = 0 \equiv \exists n \text{Signal}(\text{In}(n, g)) = 0 \)
- \(\forall g \) Type\((g) = \text{XOR} \Rightarrow \)
 \quad \text{Signal}(\text{Out}(1, g)) = 1 \equiv \text{Signal}(\text{In}(1, g)) \neq \text{Signal}(\text{In}(2, g)) \)
- \(\forall g \) Type\((g) = \text{NOT} \Rightarrow \text{Signal}(\text{Out}(1, g)) \neq \text{Signal}(\text{In}(1, g)) \)
5. Encode the specific problem instance:

\[
\begin{align*}
\text{Type}(X_1) &= \text{XOR} & \text{Type}(X_2) &= \text{XOR} \\
\text{Type}(A_1) &= \text{AND} & \text{Type}(A_2) &= \text{AND} \\
\text{Type}(O_1) &= \text{OR}
\end{align*}
\]

\[
\begin{align*}
\text{Connected}(\text{Out}(1, X_1), \text{In}(1, X_2)) & \quad \text{Connected}(\text{In}(1, C_1), \text{In}(1, X_1)) \\
\text{Connected}(\text{Out}(1, X_1), \text{In}(2, A_2)) & \quad \text{Connected}(\text{In}(1, C_1), \text{In}(1, A_1)) \\
\text{Connected}(\text{Out}(1, A_2), \text{In}(1, O_1)) & \quad \text{Connected}(\text{In}(2, C_1), \text{In}(2, X_1)) \\
\text{Connected}(\text{Out}(1, A_1), \text{In}(2, O_1)) & \quad \text{Connected}(\text{In}(2, C_1), \text{In}(2, A_1)) \\
\text{Connected}(\text{Out}(1, X_2), \text{Out}(1, C_1)) & \quad \text{Connected}(\text{In}(3, C_1), \text{In}(2, X_2)) \\
\text{Connected}(\text{Out}(1, O_1), \text{Out}(2, C_1)) & \quad \text{Connected}(\text{In}(3, C_1), \text{In}(1, A_2))
\end{align*}
\]
The Electronic Circuits Domain

6. Pose queries to the inference procedure
 - E.g. what are the outputs, given a set of input signals?
 - I.e.
 \[\exists o_1, o_2 \]
 \[(\text{Signal}(\text{In}(1, C_1)) = 1 \land \text{Signal}(\text{In}(2, C_1)) = 0 \land \text{Signal}(\text{In}(3, C_1)) = 1) \]
 \[\Rightarrow \]
 \[(\text{Signal}(\text{Out}(1, C_1)) = o_1 \land \text{Signal}(\text{Out}(2, C_1)) = o_2) \]
The Electronic Circuits Domain

6. Pose queries to the inference procedure
 - E.g. what are the outputs, given a set of input signals?
 - I.e.
 \[\exists o_1, o_2 \]
 \[(\text{Signal}(\text{In}(1, C_1)) = 1 \land \text{Signal}(\text{In}(2, C_1)) = 0 \land \text{Signal}(\text{In}(3, C_1)) = 1) \]
 \[\Rightarrow \]
 \[(\text{Signal}(\text{Out}(1, C_1)) = o_1 \land \text{Signal}(\text{Out}(2, C_1)) = o_2) \]

7. Debug the knowledge base
 - E.g. may have omitted assertions like \(0 \neq 1 \).
Summary

• First-order logic:
 • Much more expressive than propositional logic
 • objects and relations are semantic primitives
 • syntax: constants, functions, predicates, equality, quantifiers

• FOL is harder to reason with
 • Undecidable in general