Logical Agents: Propositional Logic

Chapter 7
Outline

Topics:

• Knowledge-based agents
• Example domain: The Wumpus World
• Logic in general
 • models and entailment
• Propositional (Boolean) logic
• Equivalence, validity, satisfiability
• Inference rules and theorem proving
 • forward chaining
 • backward chaining
 • resolution
Knowledge bases

- **Knowledge base** = set of *sentences* in a *formal* language
- **Declarative** approach to building an agent (or other system).
 - Declarative: Sentences express assertions about the domain
- Knowledge base operations:
 - *Tell* it what it needs to know
 - *Ask* (itself?) what to do – *query*
 - Answers should follow from the contents of the KB
Knowledge bases

Agents can be viewed:

• at the knowledge level
 • i.e., what they know, regardless of how implemented
• at the implementation level (also called the symbol level)
 • i.e., data structures and algorithms that manipulate them

Compare: abstract data type vs. data structure used to implement an ADT.
A simple knowledge-based agent

Function **KB-Agent**(percept) returns an action

static: KB, a knowledge base

t, a counter, initially 0, indicating time

```
Tell(KB, Make-Percept-Sentence(percept, t))
```

```
action ← Ask(KB, Make-Action-Query(t))
```

```
Tell(KB, Make-Action-Sentence(action, t))
```

```
t ← t + 1
```

return action
A simple knowledge-based agent

In the most general case, the agent must be able to:

• Represent states, actions, etc.
• Incorporate new percepts
• Update internal representations of the world
• Deduce hidden/implicit properties of the world
• Deduce appropriate actions
The Wumpus World

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Stench</td>
<td>Breeze</td>
<td>PIT</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pitt</td>
<td>Breeze</td>
<td>Pitt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pitt</td>
<td>Breeze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Breeze</td>
<td>Pitt</td>
<td>Pitt</td>
<td>Breeze</td>
</tr>
</tbody>
</table>

Start Position: 1, 1

- **Stench**
- **PIT**
- **Gold**
- **Breeze**
Wumpus World PEAS description

Performance measure: gold: +1000; death: -1000; -1 per step; -10 for using the arrow

Environment:
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Sensors: Breeze, Glitter, Smell, Bump, Scream
Wumpus world characterisation

Observable: ??
Wumpus world characterisation

Observable: No – only *local* perception

Deterministic: ??
Wumpus world characterisation

Observable: No – only *local* perception
Deterministic: Yes – outcomes exactly specified
Episodic: ??
Wumpus world characterisation

Observable: No – only *local* perception

Deterministic: Yes – outcomes exactly specified

Episodic: No – sequential at the level of actions

Static: ??
Wumpus world characterisation

Observable: No – only *local* perception

Deterministic: Yes – outcomes exactly specified

 Episodic: No – sequential at the level of actions

 Static: Yes – Wumpus and pits do not move

Discrete: ??
Wumpus world characterisation

Observable: No – only *local* perception

Deterministic: Yes – outcomes exactly specified

 Episodic: No – sequential at the level of actions

 Static: Yes – Wumpus and pits do not move

Discrete: Yes

Single-agent: ??
Wumpus world characterisation

Observable: No – only *local* perception

Deterministic: Yes – outcomes exactly specified
 Episodic: No – sequential at the level of actions
 Static: Yes – Wumpus and pits do not move

Discrete: Yes

Single-agent: Yes – Wumpus is essentially a natural feature
Exploring a wumpus world

Percept:
[Stench: No, Breeze: No, Glitter: No, Bump: No, Scream: No]
Exploring a wumpus world

Percept:

[Stench: No, Breeze: Yes, Glitter: No, Bump: No, Scream: No]
Exploring a wumpus world

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p?</td>
<td>B</td>
<td>OK</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Percept:
[Stench: No, Breeze: Yes, Glitter: No, Bump: No, Scream: No]
Exploring a wumpus world

Percept:
[Stench: Yes, Breeze: No, Glitter: No, Bump: No, Scream: No]
Exploring a wumpus world

Percept:

[Stench: Yes, Breeze: No, Glitter: No, Bump: No, Scream: No]
Exploring a wumpus world

Percept:

[Stench: No, Breeze: No, Glitter: No, Bump: No, Scream: No]
Exploring a wumpus world

Percept:

[Stench: No, Breeze: No, Glitter: No, Bump: No, Scream: No]
Exploring a wumpus world

Percept:

[Stench: Yes, Breeze: Yes, Glitter: Yes, Bump: No, Scream: No]
Tight spots

- Breeze in (1,2) and (2,1)
 \[\Rightarrow\] no safe actions
Tight spots

- Breeze in (1,2) and (2,1)
 \[\text{⇒ no safe actions}\]
- If pits are uniformly distributed, (2,2) is more likely to have a pit than (1,3) + (3,1)
Tight spots

• Smell in (1,1)
 ⇒ cannot safely move
Tight spots

- Smell in (1,1) ⇒ cannot safely move
- Can use a strategy of *coercion*:
 - shoot straight ahead
 - wumpus was there ⇒ dead ⇒ safe
 - wumpus wasn’t there ⇒ safe
Logic in the Wumpus World

- As the agent moves and carries out sensing actions, it performs *logical reasoning*.
 - E.g.: “If (1,3) or (2,2) contains a pit and (2,2) doesn’t contain a pit then (1,3) must contain a pit”.
- We’ll use logic to represent information about the wumpus world, and to reason about this world.
Logic in general

- A *logic* is a formal language for representing information such that conclusions can be drawn
- The *syntax* defines the sentences in the language
- The *semantics* define the “meaning” of sentences;
 - i.e., define *truth* of a *sentence* in a *world*
- E.g., in the language of arithmetic
 - $x + 2 \geq y$ is a sentence; $x^2 + y >$ is not a sentence
 - $x + 2 \geq y$ is true iff the number $x + 2$ is not less than y
 - $x + 2 \geq y$ is true in a world where $x = 7, y = 1$
 - $x + 2 \geq y$ is false in a world where $x = 0, y = 6$
Semantics: Entailment

- **Entailment** means that one thing *follows from* another:
 \[KB \models \alpha \]
- Knowledge base \(KB \) *entails* sentence \(\alpha \) if and only if:
 - \(\alpha \) is true in all worlds where \(KB \) is true
 - Or: if \(KB \) is true then \(\alpha \) must be true.
- E.g., the KB containing “the Canucks won” entails “either the Canucks won or the Leafs won”
- E.g., \(x + y = 4 \) entails \(4 = x + y \)
- Entailment is a relationship between sentences (i.e., *syntax*) that is based on *semantics*
- Note: Brains (arguably) process *syntax* (of some sort).
• Logicians typically think in terms of *models*, which are complete descriptions of a world, with respect to which truth can be evaluated

• We say *m* is a model of a sentence *α* if *α* is true in *m*

• *M(α)* is the set of all models of *α*

• Thus *KB |= α* if and only if *M(KB) ⊆ M(α)*

• E.g. *KB = Canucks won and Leafs won*

 α = Canucks won
Aside: Semantics

• Logic texts usually distinguish:
 • an *interpretation*, which is some possible world or complete state of affairs, from
 • a *model*, which is an interpretation that makes a specific sentence or set of sentences true.

• The text uses *model* in both senses (so don’t be confused if you’ve seen the terms interpretation/model from earlier courses).
 • And if you haven’t, ignore this slide!

• We’ll use the text’s terminology.
Entailment in the Wumpus World

Consider the situation where the agent detects nothing in [1,1], moves right, detects a breeze in [2,1]

- Consider possible models for just the ?’s, assuming only pits

![Diagram](image)

- With no information:
 3 Boolean choices \Rightarrow 8 possible models
Wumpus Models

Consider possible arrangements of pits in [1,2], [2,2], and [3,1], along with observations:
Models of the KB:

- $KB = \text{wumpus-world rules} + \text{observations}$
• $KB = \text{wumpus-world rules } + \text{ observations}$

• $\alpha_1 = "[1,2] \text{ is safe", } KB \models \alpha_1$, proved by \textit{model checking}
Wumpus Models: Another Example

- $KB = \text{wumpus-world rules} + \text{observations}$
Wumpus Models: Another Example

- $KB = \text{wumpus-world rules} + \text{observations}$
- $\alpha_2 = \text{“[2,2] is safe”, } KB \not\models \alpha_2$
Inference

In the case of propositional logic, we can use entailment to derive conclusions by enumerating models.

- This is the usual method of computing *truth tables*.
- I.e. can use entailment to do *inference*.
- In first order logic we generally can't enumerate all models (since there may be infinitely many of them and they may have an infinite domain).
- An *inference procedure* is a (syntactic) procedure for deriving some formulas from others.
Inference

- Inference is a procedure for computing entailments.
- \(KB \vdash \alpha \) = sentence \(\alpha \) can be derived from \(KB \) by the inference procedure.
- Entailment says what things are implicitly true in a KB.
- Inference is used to \textit{compute} things that are implicitly true.
Inference

- Inference is a procedure for computing entailments.
- $KB \vdash \alpha$ = sentence α can be derived from KB by the inference procedure.
- Entailment says what things are implicitly true in a KB.
- Inference is used to compute things that are implicitly true.

Desiderata:

- **Soundness**: An inference procedure is sound if whenever $KB \vdash \alpha$, it is also true that $KB \models \alpha$.
- **Completeness**: An inference procedure is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash \alpha$.
Propositional Logic: Syntax

• Propositional logic is a simple logic – illustrates basic ideas
• We first specify the *proposition symbols* or *(atomic) sentences*: P_1, P_2 etc.
• Then we define the language:
 If S_1 and S_2 are sentences then:
 • $\neg S_1$ is a sentence (*negation*)
 • $S_1 \land S_2$ is a sentence (*conjunction*)
 • $S_1 \lor S_2$ is a sentence (*disjunction*)
 • $S_1 \Rightarrow S_2$ is a sentence (*implication*)
 • $S_1 \equiv S_2$ is a sentence (*biconditional*)
Propositional Logic: Semantics

- Each model assigns true or false to each proposition symbol
- E.g.: $P_{1,2} \leftarrow true$, $P_{2,2} \leftarrow true$, $P_{3,1} \leftarrow false$
 (With these symbols, 8 possible models, can be enumerated.)
- Rules for evaluating truth with respect to a model m:

 $\neg S$ is true iff S is false

 $S_1 \land S_2$ is true iff S_1 is true and S_2 is true

 $S_1 \lor S_2$ is true iff S_1 is true or S_2 is true

 $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true

 $S_1 \equiv S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

- Simple recursive process evaluates an arbitrary sentence, e.g.,

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$
Truth Tables for Connectives

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \implies Q$</th>
<th>$P \iff Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in $[i,j]$.
- Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.
- Information from sensors: $\neg P_{1,1}$, $\neg B_{1,1}$, $B_{2,1}$
- Also know: “pits cause breezes in adjacent squares”
Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in $[i,j]$.
- Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.
- Information from sensors: $\neg P_{1,1}$, $\neg B_{1,1}$, $B_{2,1}$
- “A square is breezy if and only if there is an adjacent pit”

 $B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$
 $B_{2,1} \equiv (P_{1,1} \lor P_{2,2} \lor P_{3,1})$

 - Note: $B_{1,1}$ has no “internal structure” – think of it as a string.
 - So must write one formula for each square.
Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in $[i,j]$.
- Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.
- Information from sensors: $\neg P_{1,1}, \neg B_{1,1}, B_{2,1}$
- “A square is breezy if and only if there is an adjacent pit”
 \[B_{1,1} \equiv (P_{1,2} \lor P_{2,1}) \]
 \[B_{2,1} \equiv (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \]
 - Note: $B_{1,1}$ has no “internal structure” – think of it as a string.
 - So must write one formula for each square.
- Using logic can conclude $\neg P_{1,2}$ and $\neg P_{2,1}$ from $\neg B_{1,1}$.
- Note, if you wrote the above as:
 \[B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1}) \]
 (i.e. “A breeze implies a pit in an adjacent square”) you could not derive $\neg P_{1,2}$ and $\neg P_{2,1}$ from $\neg B_{1,1}$.
 - Crucial to express all information
Wumpus World KB

For the part of the Wumpus world we’re looking at, let

$$KB = \{ R_1, R_2, R_3, R_4, R_5 \}$$

where

- R_1 is $\neg P_{1,1}$
- R_2 is $B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$
- R_3 is $B_{2,1} \equiv (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
- R_4 is $\neg B_{1,1}$
- R_5 is $B_{2,1}$
Truth Tables for Inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>\vdots</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>\underline{t}</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>\underline{t}</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>\underline{t}</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>\vdots</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
</tr>
</tbody>
</table>

- Enumerate rows (different assignments to symbols),
- For $KB \models \alpha$, if KB is true in row, check that α is too
Inference by Enumeration

Function `TT-Entails?(KB, α)` returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
α the query, a sentence in propositional logic
symbols ← a list of the proposition symbols in KB and α
return `TT-Check-All(KB, α, symbols, [])`
Inference by Enumeration

Function TT-Check-All(KB, α, symbols, model) returns true or false

if Empty?(symbols) then
 if PL-True?(KB, model) then return PL-True?(α, model)
 else return true
else do
 $P \leftarrow First($symbols$)$; rest $\leftarrow Rest($symbols$)$
 return TT-Check-All(KB, α, rest, model $\cup \{ P = true \}$) and
 TT-Check-All(KB, α, rest, model $\cup \{ P = false \}$)

• Depth-first enumeration of all models
 • Hence, sound and complete

• Algorithm is $O(2^n)$ for n symbols; problem is co-NP-complete
Other Means of Computing Logical Inference

- We’ll briefly consider other means of computing entailments:
 - Resolution theorem proving
 - Specialised rule-based approaches
- But first, some more terminology
Logical Equivalence

- Two sentences are *logically equivalent* iff true in same models:
 \[\alpha \equiv \beta \text{ if and only if } \alpha \models \beta \text{ and } \beta \models \alpha \]

- The following should be familiar:

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \\
\neg(\neg \alpha) & \equiv \alpha \\
(\alpha \Rightarrow \beta) & \equiv (\neg \beta \Rightarrow \neg \alpha) \\
(\alpha \Rightarrow \beta) & \equiv (\neg \alpha \lor \beta) \\
(\alpha \equiv \beta) & \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))
\end{align*}
\]
Validity and Satisfiability

- A sentence is valid if it is true in all models, e.g., $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

- Validity is connected to inference via the Deduction Theorem: $\text{KB} \models \alpha$ if and only if $(\text{KB} \Rightarrow \alpha)$ is valid.

- A sentence is satisfiable if it is true in some model, e.g., $A \lor B$, C

- A sentence is unsatisfiable if it is true in no models, e.g., $A \land \neg A$

- Satisfiability is connected to inference via the following: $\text{KB} \models \alpha$ if and only if $(\text{KB} \land \neg \alpha)$ is unsatisfiable.

- I.e., prove α by reductio ad absurdum.

- What often proves better for determining $\text{KB} \models \alpha$ is to show that $\text{KB} \land \neg \alpha$ is unsatisfiable.
Validity and Satisfiability

- A sentence is **valid** if it is true in *all* models, e.g., $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is **satisfiable** if it is true in *some* model, e.g., $A \lor B$, C
- A sentence is **unsatisfiable** if it is true in *no* models, e.g., $A \land \neg A$
- Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
- I.e., prove α by *reductio ad absurdum*
- What often proves better for determining $KB \models \alpha$ is to show that $KB \land \neg \alpha$ is unsatisfiable.
Validity and Satisfiability

- A sentence is **valid** if it is true in *all* models,
 e.g., \(A \lor \neg A \), \(A \Rightarrow A \), \((A \land (A \Rightarrow B)) \Rightarrow B \)

- Validity is connected to inference via the *Deduction Theorem*:
 \(KB \models \alpha \) if and only if \((KB \Rightarrow \alpha) \) is valid

- A sentence is **satisfiable** if it is true in *some* model
 e.g., \(A \lor B \), \(C \)
Validity and Satisfiability

- A sentence is **valid** if it is true in *all* models, e.g., \(A \lor \neg A, \ A \Rightarrow A, \ (A \land (A \Rightarrow B)) \Rightarrow B \)

- Validity is connected to inference via the **Deduction Theorem**: \(KB \models \alpha \) if and only if \((KB \Rightarrow \alpha) \) is valid

- A sentence is **satisfiable** if it is true in *some* model e.g., \(A \lor B, \ C \)

- A sentence is **unsatisfiable** if it is true in *no* models e.g., \(A \land \neg A \)
Validity and Satisfiability

• A sentence is valid if it is true in all models, e.g., $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

• Validity is connected to inference via the Deduction Theorem:
 $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

• A sentence is satisfiable if it is true in some model e.g., $A \lor B$, C

• A sentence is unsatisfiable if it is true in no models e.g., $A \land \neg A$

• Satisfiability is connected to inference via the following:
 $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable

 • I.e., prove α by reductio ad absurdum
Validity and Satisfiability

- A sentence is **valid** if it is true in *all* models, e.g., \(A \lor \neg A, \ A \Rightarrow A, \ (A \land (A \Rightarrow B)) \Rightarrow B \)
- Validity is connected to inference via the **Deduction Theorem**: \(KB \models \alpha \) if and only if \((KB \Rightarrow \alpha)\) is valid
- A sentence is **satisfiable** if it is true in *some* model e.g., \(A \lor B, \ C \)
- A sentence is **unsatisfiable** if it is true in *no* models e.g., \(A \land \neg A \)
- Satisfiability is connected to inference via the following: \(KB \models \alpha \) if and only if \((KB \land \neg \alpha)\) is unsatisfiable
 - I.e., prove \(\alpha \) by **reductio ad absurdum**
- What often proves better for determining \(KB \models \alpha \) is to show that \(KB \land \neg \alpha \) is unsatisfiable.
General Propositional Inference: Resolution

Resolution is a rule of inference defined for *Conjunctive Normal Form* (CNF)

- **CNF**: conjunction of *disjunctions* of *literals*
- A *clause* is a *disjunctions* of *literals*.
- E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\).

WRITE as: \((A \lor \neg B)\), \((B \lor \neg C \lor \neg D)\)
Resolution

- **Resolution** inference rule:

 \[
 \ell_1 \lor \cdots \lor \ell_k, \quad m_1 \lor \cdots \lor m_n
 \equiv
 \ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n
 \]

 where \(\ell_i\) and \(m_j\) are complementary literals. (i.e. \(\ell_i \equiv \neg m_j\).)

- E.g., \[
P_{1,3} \lor P_{2,2}, \quad \neg P_{2,2}
 \]

 \[
P_{1,3}
 \]
Resolution

- **Resolution** inference rule:

\[
\begin{align*}
\ell_1 \lor \cdots \lor \ell_k, & \quad m_1 \lor \cdots \lor m_n \\
\ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n
\end{align*}
\]

where \(\ell_i\) and \(m_j\) are complementary literals. (i.e. \(\ell_i \equiv \neg m_j\).)

- E.g., \(P_{1,3} \lor P_{2,2}, \neg P_{2,2}\)

\[
P_{1,3}
\]

- If you can derive the “empty clause” from a set of clauses \(C\), then \(C\) is unsatisfiable.

- E.g. \(\{A, \neg A \lor B, \neg B\}\) is unsatisfiable.
Resolution

- **Resolution** inference rule:

\[
\ell_1 \lor \cdots \lor \ell_k, \quad m_1 \lor \cdots \lor m_n
\]

\[
\ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n
\]

where \(\ell_i \) and \(m_j \) are complementary literals. (i.e. \(\ell_i \equiv \neg m_j \).)

- E.g., \(P_{1,3} \lor P_{2,2}, \neg P_{2,2} \)

\[
P_{1,3}
\]

- If you can derive the “empty clause” from a set of clauses \(C \), then \(C \) is unsatisfiable.

 - E.g. \(\{ A, \neg A \lor B, \neg B \} \) is unsatisfiable.

- Resolution is sound and complete for propositional logic

- I.e. \(KB \models \alpha \) iff

\[
KB \land \neg \alpha \text{ is unsatisfiable} \quad \text{iff}
\]

the empty clause can be obtained from \(KB \land \neg \alpha \)

by resolution
Using resolution to compute entailments

To show whether $KB \models \alpha$, show instead that $KB \land \neg \alpha$ is unsatisfiable:

1. Convert $KB \land \neg \alpha$ into conjunctive normal form.
2. Use resolution to determine whether $KB \land \neg \alpha$ is unsatisfiable.
3. If so then $KB \models \alpha$; otherwise $KB \not\models \alpha$.
Conversion to CNF

E.g.: \(B_{1,1} \equiv (P_{1,2} \lor P_{2,1}) \)
Conversion to CNF

E.g.: \(B_{1,1} \equiv (P_{1,2} \lor P_{2,1}) \)

1. Eliminate \(\equiv \), replacing \(\alpha \equiv \beta \) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \).
\[
(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})
\]
Conversion to CNF

E.g.: \(B_{1,1} \equiv (P_{1,2} \lor P_{2,1}) \)

1. Eliminate \(\equiv \), replacing \(\alpha \equiv \beta \) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \).
 \[
 (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})
 \]

2. Eliminate \(\Rightarrow \), replacing \(\alpha \Rightarrow \beta \) with \(\neg \alpha \lor \beta \).
 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})
 \]
Conversion to CNF

E.g.: $B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$

1. Eliminate \equiv, replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

 $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg\alpha \lor \beta$.

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg(P_{1,2} \lor P_{2,1}) \lor B_{1,1})$

3. Move \neg inwards using de Morgan’s rules and double-negation:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
Conversion to CNF

E.g.: $B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$

1. Eliminate \equiv, replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

 $$(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.

 $$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg(P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

3. Move \neg inwards using de Morgan’s rules and double-negation:

 $$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Apply distributivity law (\lor over \land) and flatten:

 $$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$
Conversion to CNF

E.g.: $B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$

1. Eliminate \equiv, replacing $\alpha \equiv \beta$ with $(\alpha \implies \beta) \land (\beta \implies \alpha)$.

 $(B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1})$

2. Eliminate \implies, replacing $\alpha \implies \beta$ with $\neg \alpha \lor \beta$.

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$

3. Move \neg inwards using de Morgan’s rules and double-negation:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$

4. Apply distributivity law (\lor over \land) and flatten:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

For resolution, then write as

$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$, $(\neg P_{1,2} \lor B_{1,1})$, $(\neg P_{2,1} \lor B_{1,1})$
Resolution Algorithm

Function $\text{PL-Resolution}(KB, \alpha)$ returns true or false

inputs: KB, the knowledge base, a sentence in propositional logic
 α, the query, a sentence in propositional logic

$\text{clauses} \leftarrow \text{the set of clauses in CNF}(KB \land \neg \alpha)$

loop do
 if clauses contains the empty clause then return true
 if C_i, C_j are resolvable clauses where
 $\text{PL-Resolve}(C_i, C_j) \notin \text{clauses}$
 then $\text{clauses} \leftarrow \text{clauses} \cup \text{PL-Resolve}(C_i, C_j)$
 else return false

Note that the algorithm in the text is buggy
Resolution Example

- E.g.: \(KB = (B_{1,1} \equiv (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}, \)
 \[\alpha = \neg P_{1,2} \]
- Show \(KB \models \alpha \) by showing that \(KB \land \neg \alpha \) is unsatisfiable:
Resolution: Continued

There is a great deal that can be done to improve the basic algorithm:

- Unit resolution: propagate unit clauses (e.g. $\neg B_{1,1}$) as much as possible.
 - Note that this corresponds to the *minimum remaining values* heuristic in constraint satisfaction!
- Eliminate tautologies
- Eliminate redundant clauses
- Eliminate clauses with literal ℓ where the complement of ℓ doesn’t appear elsewhere.
- Set of support: Do resolutions on clauses with ancestor in $\neg \alpha$.
 - I.e. keep a focus on the goal.
Specialised Inference: Rule-Based Reasoning

- We consider a very useful, restricted case: **Horn Form**
 - KB = *conjunction* of *Horn clauses*
- Horn clause =
 - proposition symbol; or
 - A rule of the form:
 (conjunction of symbols) ⇒ symbol
- E.g., $C, (B \Rightarrow A), (C \land D \Rightarrow B)$
 Not: $(\neg B \Rightarrow A), (B \lor A)$
- Use Horn clauses to derive individual facts (or atoms), not arbitrary formulas.
Horn clauses

Technically a Horn clause is a *clause* or disjunction of literals, with *at most* one positive literal.

- I.e. of form $A_0 \lor \neg A_1 \lor \cdots \lor \neg A_n$ or $\neg A_1 \lor \cdots \lor \neg A_n$
- These can be written: $A_1 \land \cdots \land A_n \Rightarrow A_0$ or $A_1 \land \cdots \land A_n \Rightarrow \bot$
- We won’t bother with rules of the form $A_1 \land \cdots \land A_n \Rightarrow \bot$
 - Rules of this form are called *integrity constraints*.
 - They don’t allow new facts to be derived, but rather rule out certain combinations of facts.
Reasoning with Horn clauses

- **Modus Ponens** (for Horn form): Complete for Horn KBs
 \[\alpha_1, \ldots, \alpha_n, \quad \alpha_1 \land \cdots \land \alpha_n \Rightarrow \beta \]

 - Can be used with forward chaining or backward chaining.
 - **Forward chaining**: Iteratively add new derived facts.
 - **Backward chaining**: From a query, work backwards through the rules to known facts.

 These algorithms are very natural; forward chaining runs in linear time.
Reasoning with Horn clauses

• **Modus Ponens** (for Horn form): Complete for Horn KBs

 \[\frac{\alpha_1, \ldots, \alpha_n, \quad \alpha_1 \land \cdots \land \alpha_n \Rightarrow \beta}{\beta} \]

• Can be used with *forward chaining* or *backward chaining*.

• **Forward chaining**: Iteratively add new derived facts
Reasoning with Horn clauses

- **Modus Ponens** (for Horn form): Complete for Horn KBs

 \[\alpha_1, \ldots, \alpha_n, \alpha_1 \land \cdots \land \alpha_n \Rightarrow \beta \]

- Can be used with *forward chaining* or *backward chaining*.

- **Forward chaining**: Iteratively add new derived facts

- **Backward chaining**: From a query, work backwards through the rules to known facts.
Reasoning with Horn clauses

- **Modus Ponens** (for Horn form): Complete for Horn KBs
 \[
 \alpha_1, \ldots, \alpha_n, \quad \alpha_1 \land \cdots \land \alpha_n \Rightarrow \beta
 \]
- Can be used with *forward chaining* or *backward chaining*.
- **Forward chaining**: Iteratively add new derived facts
- **Backward chaining**: From a query, work backwards through the rules to known facts.
- These algorithms are very natural; forward chaining runs in *linear* time
Example

KB:

\[P \Rightarrow Q, \]
\[L \land M \Rightarrow P, \]
\[B \land L \Rightarrow M, \]
\[A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \]
\[A, \]
\[B \]
Forward chaining

Idea:

- Fire any rule whose premises are satisfied in the KB,
- Add its conclusion to the KB, until query is found
Forward chaining algorithm

Procedure:

\[C := \{\}; \]

\textit{repeat}

\textit{choose} \(r \in A \) \textit{such that}
\[r \text{ is } 'b_1 \wedge \cdots \wedge b_m \Rightarrow h' \]
\[b_i \in C \text{ for all } i, \text{ and} \]
\[h \notin C; \]

\[C := C \cup \{h\} \]

\textit{until no more choices}
Forward chaining example

KB:
- \(P \Rightarrow Q \),
- \(L \land M \Rightarrow P \),
- \(B \land L \Rightarrow M \),
- \(A \land P \Rightarrow L \),
- \(A \land B \Rightarrow L \),
- \(A \),
- \(B \)

Query \(Q \):

• From \(A \) and \(B \), conclude \(L \)
• From \(L \) and \(B \), conclude \(M \)
• From \(L \) and \(M \), conclude \(P \)
• From \(P \) conclude \(Q \)
Forward chaining example

KB:

\[P \Rightarrow Q, \]
\[L \land M \Rightarrow P, \]
\[B \land L \Rightarrow M, \]
\[A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \]
\[A, \]
\[B \]

Query Q:

- From A and B, conclude L
Forward chaining example

KB:

\[P \Rightarrow Q, \]
\[L \land M \Rightarrow P, \]
\[B \land L \Rightarrow M, \]
\[A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \]
\[A, \]
\[B \]

Query Q:

• From \(A \) and \(B \), conclude \(L \)
• From \(L \) and \(B \), conclude \(M \)
Forward chaining example

KB:

\[P \implies Q, \]
\[L \land M \implies P, \]
\[B \land L \implies M, \]
\[A \land P \implies L, \]
\[A \land B \implies L, \]
\[A, \]
\[B \]

Query \(Q \):

- From \(A \) and \(B \), conclude \(L \)
- From \(L \) and \(B \), conclude \(M \)
- From \(L \) and \(M \), conclude \(P \)
Forward chaining example

KB:

\[P \Rightarrow Q, \]
\[L \land M \Rightarrow P, \]
\[B \land L \Rightarrow M, \]
\[A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \]
\[A, \]
\[B \]

Query \(Q \):

- From \(A \) and \(B \), conclude \(L \)
- From \(L \) and \(B \), conclude \(M \)
- From \(L \) and \(M \), conclude \(P \)
- From \(P \) conclude \(Q \)
Backward chaining

- We won't develop an algorithm for backward chaining, but will just consider it informally.
- Idea with backward chaining:
 Start from query q and work backwards.
- To prove q by BC:
 - check if q is known already;
 - otherwise prove (by BC) all premises of some rule concluding q
- Avoid loops: Check if new subgoal is already on the goal stack
- Avoid repeated work: Check if new subgoal
 1. has already been proved true, or
 2. has already failed
Backward chaining example

KB:

\[P \Rightarrow Q, \quad L \land M \Rightarrow P, \quad B \land L \Rightarrow M, \quad A \land P \Rightarrow L,\]
\[A \land B \Rightarrow L, \quad A, \quad B \]

Query Q:

• Establish \(P \) as a subgoal.
 • Can prove \(P \) by proving \(L \) and \(M \)
 • For \(M \):
 • Can prove \(M \) if we can prove \(B \) and \(L \)
 • \(B \) is known to be true
 • \(L \) can be proven by proving \(A \) and \(B \).
 • \(A \) and \(B \) are known to be true
 • For \(L \):
 • \(L \) can be proven by proving \(A \) and \(B \).
 • \(A \) and \(B \) are known to be true
• \(L \) and \(M \) are true, thus \(P \) is true, thus \(Q \) is true
Backward chaining example

KB:

\[P \Rightarrow Q, \quad L \land M \Rightarrow P, \quad B \land L \Rightarrow M, \quad A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \quad A, \quad B \]

Query \(Q \):

- Establish \(P \) as a subgoal.
Backward chaining example

KB:

\[P \Rightarrow Q, \quad L \land M \Rightarrow P, \quad B \land L \Rightarrow M, \quad A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \quad A, \quad B \]

Query \(Q \):

- Establish \(P \) as a subgoal.
- Can prove \(P \) by proving \(L \) and \(M \).
Backward chaining example

KB:

\[P \Rightarrow Q, \quad L \land M \Rightarrow P, \quad B \land L \Rightarrow M, \quad A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \quad A, \quad B \]

Query Q:

- Establish \(P \) as a subgoal.
- Can prove \(P \) by proving \(L \) and \(M \)
- For \(M \):
 - Can prove \(M \) if we can prove \(B \) and \(L \)
Backward chaining example

KB:

\[P \Rightarrow Q, \quad L \land M \Rightarrow P, \quad B \land L \Rightarrow M, \quad A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \quad A, \quad B \]

Query Q:

- Establish \(P \) as a subgoal.
- Can prove \(P \) by proving \(L \) and \(M \)
- For \(M \):
 - Can prove \(M \) if we can prove \(B \) and \(L \)
 - \(B \) is known to be true
Backward chaining example

KB:

\[P \Rightarrow Q, \quad L \land M \Rightarrow P, \quad B \land L \Rightarrow M, \quad A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \quad A, \quad B \]

Query \(Q \):

- Establish \(P \) as a subgoal.
- Can prove \(P \) by proving \(L \) and \(M \)
- For \(M \):
 - Can prove \(M \) if we can prove \(B \) and \(L \)
 - \(B \) is known to be true
 - \(L \) can be proven by proving \(A \) and \(B \).
Backward chaining example

KB:
\[P \Rightarrow Q, \quad L \land M \Rightarrow P, \quad B \land L \Rightarrow M, \quad A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \quad A, \quad B \]

Query \(Q \):

- Establish \(P \) as a subgoal.
- Can prove \(P \) by proving \(L \) and \(M \)
- For \(M \):
 - Can prove \(M \) if we can prove \(B \) and \(L \)
 - \(B \) is known to be true
 - \(L \) can be proven by proving \(A \) and \(B \).
 - \(A \) and \(B \) are known to be true

- \(L \) and \(M \) are true, thus \(P \) is true, thus \(Q \) is true
Backward chaining example

KB:

\[P \Rightarrow Q, \quad L \land M \Rightarrow P, \quad B \land L \Rightarrow M, \quad A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \quad A, \quad B \]

Query \(Q\):

- Establish \(P\) as a subgoal.
- Can prove \(P\) by proving \(L\) and \(M\)
- For \(M\):
 - Can prove \(M\) if we can prove \(B\) and \(L\)
 - \(B\) is known to be true
 - \(L\) can be proven by proving \(A\) and \(B\).
 - \(A\) and \(B\) are known to be true
- For \(L\):
 - \(L\) can be proven by proving \(A\) and \(B\).
 - \(A\) and \(B\) are known to be true
Backward chaining example

KB:

\[P \Rightarrow Q, \quad L \land M \Rightarrow P, \quad B \land L \Rightarrow M, \quad A \land P \Rightarrow L, \]
\[A \land B \Rightarrow L, \quad A, \quad B \]

Query \(Q \):

- Establish \(P \) as a subgoal.
- Can prove \(P \) by proving \(L \) and \(M \)
- For \(M \):
 - Can prove \(M \) if we can prove \(B \) and \(L \)
 - \(B \) is known to be true
 - \(L \) can be proven by proving \(A \) and \(B \).
 - \(A \) and \(B \) are known to be true
- For \(L \):
 - \(L \) can be proven by proving \(A \) and \(B \).
 - \(A \) and \(B \) are known to be true
- \(L \) and \(M \) are true, thus \(P \) is true, thus \(Q \) is true
Forward vs. backward chaining

- FC is *data-driven*, cf. automatic, unconscious processing,
 - E.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal
 - Good for reactive agents

- BC is *goal-driven*, appropriate for problem-solving,
 - E.g., Where are my keys? How do I get a job?
 - Complexity of BC can be much less than linear in size of KB
 - Can also sometimes be exponential in size of KB
 - Good for question-answering and explanation
Forward vs. backward chaining

- FC is *data-driven*, cf. automatic, unconscious processing,
 - E.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal
 - Good for reactive agents

- BC is *goal-driven*, appropriate for problem-solving,
 - E.g., Where are my keys? How do I get a job?
 - Complexity of BC can be *much less* than linear in size of KB
 - Can also sometimes be *exponential* in size of KB
 - Good for question-answering and explanation
Summary

- Logical agents apply *inference* to a *knowledge base* to derive new information and make decisions.
- Basic concepts of logic:
 - *syntax*: formal structure of *sentences*
 - *semantics*: *truth* of sentences wrt *models*
 - *entailment*: necessary truth of one sentence given another
 - *inference*: deriving sentences from other sentences
 - *soundness*: derivations produce only entailed sentences
 - *completeness*: derivations can produce all entailed sentences
Summary (Continued)

- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Resolution is complete for propositional logic.
- Forward, backward chaining are complete for Horn clauses.
- Forward chaining is linear-time for Horn clauses.
- Propositional logic lacks expressive power