Outline

- Problem-solving agents
- Problem formulation
- Example problems
- Basic search algorithms
Problem-Solving Agents

In the *simplest* case, an agent will:

- formulate (or be given) a goal and a problem;
- search for a sequence of actions that solves the problem;
- then execute the actions.

When done it may formulate another goal and start over.

- In this case the performance measure is simply whether or not the goal is attained.

This is *offline* problem solving, executed “eyes closed.”

- Requires complete knowledge about the domain
- *Online* problem solving involves acting without necessarily having complete knowledge.
Example: Romania

- On holiday in Romania; currently in Arad.
 - Flight leaves tomorrow from Bucharest
- Formulate goal
 - Be in Bucharest
- Formulate problem
 - states: various cities
 - actions: drive between cities
- Find solution
 - Sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Example: Romania
Problem Formulation: State-Space Search

A *problem* is defined by five items:

1. The set of *states*, including the initial state e.g. "at Arad"
2. *Actions* available to the agent E.g. Vacuum: Suck, Left, . . .
 • i.e. $\text{RESULT}(s, a) =$ state resulting from doing a in s.
 e.g. $\text{RESULT}(\text{In (Arad)}, \text{Go (Zerind)}) =$ In (Zerind)
4. *Goal test*. Can be explicit, e.g. $x =$ "at Bucharest"
 implicit, e.g. NoDirt(x)
5. *Path cost* (additive) e.g. sum of distances, number of actions, etc.
 $c(x, a, y)$ is the step cost, assumed to be ≥ 0

A *solution* is a sequence of actions from initial state to a goal state.
Problem Formulation: State-Space Search

A *problem* is defined by five items:

1. The set of *states*, including the *initial state* e.g. “at Arad”

2. *Actions* available to the agent E.g. Vacuum: Suck, Left, ...

 - I.e. \(\text{RESULT}(s, a) = \text{state resulting from doing } a \text{ in } s. \)
 - e.g. \(\text{RESULT}(\text{In}(\text{Arad}), \text{Go}(\text{Zerind})) = \text{In}(\text{Zerind}) \)

1.–3. define the *state space*

4. *Goal test*. Can be explicit, e.g. \(x = \text{"at Bucharest"} \)
 - implicit, e.g. \(\text{NoDirt}(x) \)

5. *Path cost* (additive) e.g. sum of distances, number of actions, etc.
 - \(c(x, a, y) \) is the *step cost*, assumed to be \(\geq 0 \)

A *solution* is a sequence of actions from initial state to a goal state.
Problem Formulation: State-Space Search

A *problem* is defined by five items:

1. The set of *states*, including the *initial state* e.g. “at Arad”
2. *Actions* available to the agent E.g. Vacuum: Suck, Left, . . .
Problem Formulation: State-Space Search

A *problem* is defined by five items:

1. The set of *states*, including the *initial state* e.g. “at Arad”
2. *Actions* available to the agent E.g. Vacuum: Suck, Left, …
 - I.e. $\text{RESULT}(s, a) =$ state resulting from doing a in s.
 - e.g. $\text{RESULT}(\text{In(Arad)}, \text{Go(Zerind)}) = \text{In(Zerind)}$

1.–3. define the *state space*
Problem Formulation: State-Space Search

A problem is defined by five items:

1. The set of states, including the initial state e.g. “at Arad”
2. Actions available to the agent E.g. Vacuum: Suck, Left, ...
3. Transition model: What actions do; defines a graph.
 - I.e. $\text{RESULT}(s, a) = \text{state resulting from doing } a \text{ in } s.$
 e.g. $\text{RESULT}(\text{In(Arad)}, \text{Go(Zerind)}) = \text{In(Zerind)}$

1.–3. define the state space

4. Goal test. Can be explicit, e.g. $x = \text{“at Bucharest”}$
 implicit, e.g. $\text{NoDirt}(x)$
Problem Formulation: State-Space Search

A problem is defined by five items:

1. The set of states, including the initial state e.g. “at Arad”
2. Actions available to the agent E.g. Vacuum: Suck, Left, ...
3. Transition model: What actions do; defines a graph.
 - i.e. $\text{RESULT}(s, a) =$ state resulting from doing a in s.
 - e.g. $\text{RESULT}(\text{In}(Arad), \text{Go}(Zerind)) = \text{In}(Zerind)$
4. Goal test. Can be explicit, e.g. $x =$ “at Bucharest”
 implicit, e.g. NoDirt(x)
5. Path cost (additive)
 e.g. sum of distances, number of actions, etc.
 $c(x, a, y)$ is the step cost, assumed to be ≥ 0
Problem Formulation: State-Space Search

A problem is defined by five items:

1. The set of states, including the initial state e.g. “at Arad”
2. Actions available to the agent E.g. Vacuum: Suck, Left, ...
3. Transition model: What actions do; defines a graph.
 • I.e. \(\text{RESULT}(s, a) = \text{state resulting from doing } a \text{ in } s. \)
 e.g. \(\text{RESULT}(\text{In(Arad)}, \text{Go(Zerind)}) = \text{In(Zerind)} \)

1.–3. define the state space

4. Goal test. Can be explicit, e.g. \(x = \text{“at Bucharest”} \)
 implicit, e.g. \(\text{NoDirt}(x) \)

5. Path cost (additive)
 e.g. sum of distances, number of actions, etc.
 \(c(x, a, y) \) is the step cost, assumed to be \(\geq 0 \)

A solution is a sequence of actions from initial state to a goal state.
Selecting a State Space

• The real world is highly complex and contains lots of irrelevant information.
 ⇒ state space must be *abstracted* for problem solving
• (Abstract) state will have irrelevant detail removed.
• Similarly, actions must be at the right level of abstraction
 • e.g., “Go(Zerind)” omits things like starting the car, steering, etc.
• (Abstract) solution =
 set of paths that are solutions in the real world
Example: Vacuum World State Space Graph

states:
actions:
transition model:
goal test:
path cost:
Example: Vacuum World State Space Graph

- **states:** dirt and robot locations (so 2×2^2 possible states)
- **actions:**
- **transition model:**
- **goal test:**
- **path cost:**
Example: Vacuum World State Space Graph

states: dirt and robot locations
actions: Left, Right, Suck, NoOp
transition model:
goal test:
path cost:
Example: Vacuum World State Space Graph

states: dirt and robot locations
actions: Left, Right, Suck, NoOp
transition model: actions as expected, except moving left (right) in the right (left) square is a NoOp

goal test:
path cost:
Example: Vacuum World State Space Graph

states: dirt and robot locations
actions: Left, Right, Suck, NoOp
transition model: actions as expected, except moving left (right) in the right (left) square is a NoOp
goal test: no dirt
path cost:
Example: Vacuum World State Space Graph

states: dirt and robot locations
actions: Left, Right, Suck, NoOp
transition model: actions as expected, except moving left (right) in the right (left) square is a NoOp
goal test: no dirt
path cost: 1 per action (0 for NoOp)
Example: The 8-puzzle

states:
actions:
transition model:
goal test:
path cost:
Example: The 8-puzzle

Start State

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

states: (integer) locations of tiles.
- Ignore intermediate positions

actions:

transition model:

goal test:

path cost:
Example: The 8-puzzle

states: locations of tiles
actions: move blank left, right, up, down
transition model:
goal test:
path cost:
Example: The 8-puzzle

states: locations of tiles
actions: move blank left, right, up, down
transition model: given a state and action give the resulting state
goal test:
path cost:
Example: The 8-puzzle

states: locations of tiles
actions: move blank left, right, up, down
transition model: given a state and action give the resulting state
goal test: = goal state (given)
path cost:
Example: The 8-puzzle

states: locations of tiles
actions: move blank left, right, up, down
transition model: given a state and action give the resulting state
goal test: \(= \) goal state (given)
path cost: 1 per move

[Aside: optimal solution of \(n \)-Puzzle family is NP-hard]
Example: Airline Travel

states:
Example: Airline Travel

states: Include locations (airports), current time.

- Also perhaps fares, domestic/international, and other “historical aspects”.

initial state:
Example: Airline Travel

states: Include locations (airports), current time.

- Also perhaps fares, domestic/international, and other “historical aspects”.

initial state: Given by a user’s query

actions:
Example: Airline Travel

states: Include locations (airports), current time.

- Also perhaps fares, domestic/international, and other “historical aspects”.

initial state: Given by a user’s query

actions: Flight from current location with attributes such as seat class, departure time, etc.

transition model:
Example: Airline Travel

states: Include locations (airports), current time.
- Also perhaps fares, domestic/international, and other “historical aspects”.

initial state: Given by a user’s query

actions: Flight from current location with attributes such as seat class, departure time, etc.

transition model: The state resulting from taking a flight, including destination and arrival time.

goal test:
Example: Airline Travel

states: Include locations (airports), current time.

- Also perhaps fares, domestic/international, and other “historical aspects”.

initial state: Given by a user’s query

actions: Flight from current location with attributes such as seat class, departure time, etc.

transition model: The state resulting from taking a flight, including destination and arrival time.

goal test: At the final destination?

path cost:
Example: Airline Travel

states: Include locations (airports), current time.

- Also perhaps fares, domestic/international, and other “historical aspects”.

initial state: Given by a user’s query

actions: Flight from current location with attributes such as seat class, departure time, etc.

transition model: The state resulting from taking a flight, including destination and arrival time.

goal test: At the final destination?

path cost: Depends on total cost, time, waiting time, seat type, type of plane, etc.
Others Examples

How about:

- Crosswords?
- n-Queens?
- Propositional Satisfiability?
- Coffee and Mail Delivering Robot?
- Others?
Basic idea:

- Offline exploration of the state space
 - So, exploring a *directed graph*
 - Result of exploration is a *tree*
- Generate successors of already-explored states *(a.k.a. *expanding* states)*
 ⇒ The set of nodes available for expansion is the *fringe* or *frontier*.
- Key issue: Which node should be expanded next?
Tree search example
Tree search example
Tree search example
Implementation: General Tree Search

In outline:

Function `Tree-Search(problem)` returns a solution or failure
Initialize the search tree by the initial state of problem
loop do {
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion (according to some `strategy`)
 - remove the leaf node from the frontier
 if the node satisfies the goal state then return the solution
 expand the node and add the resulting nodes to the search tree
}

Aside: `Strategy` will most often be implicit in the resulting function.
Implementation: States vs. Nodes

It is important to distinguish the **state space** and the **search tree**.

- A *state* represents a configuration in the problem space.
- A *node* is part of a search tree.
 - has attributes *parent*, *children*, *depth*, *path cost* $g(x)$.

States do not have parents, children, depth, or path cost (though one state may be reachable from another).

An **Expand** function creates new nodes, filling in the various fields and using a **SuccessorFn** of the problem to create the corresponding states.
Search strategies

- A *strategy* is defined by picking the *order of node expansion*
- The *fringe* (also *frontier*) is a list of nodes that have been generated but not yet expanded.
Search strategies

• A *strategy* is defined by picking the *order of node expansion*.

• The *fringe* (also *frontier*) is a list of nodes that have been generated but not yet expanded.

• Strategies are evaluated along the following dimensions:
 - *completeness* – does it always find a solution if one exists?
 - *time complexity* – number of nodes generated/expanded
 - *space complexity* – maximum number of nodes in memory
 - *optimality* – does it always find a least-cost solution?

• Time and space complexity are measured in terms of
 - b – maximum branching factor of the search tree
 - d – depth of the least-cost solution
 - m – maximum depth of the state space (may be ∞)
Search strategies

- A *strategy* is defined by picking the *order of node expansion*
- The *fringe* (also *frontier*) is a list of nodes that have been generated but not yet expanded.
- Strategies are evaluated along the following dimensions:
 - *completeness* – does it always find a solution if one exists?
 - *time complexity* – number of nodes generated/expanded
 - *space complexity* – maximum number of nodes in memory
 - *optimality* – does it always find a least-cost solution?
Search strategies

- A strategy is defined by picking the order of node expansion.
- The fringe (also frontier) is a list of nodes that have been generated but not yet expanded.
- Strategies are evaluated along the following dimensions:
 - completeness – does it always find a solution if one exists?
 - time complexity – number of nodes generated/expanded
 - space complexity – maximum number of nodes in memory

\[
\text{Time and space complexity are measured in terms of:} \\
\text{b} \quad \text{maximum branching factor} \\
\text{d} \quad \text{depth of the least-cost solution} \\
\text{m} \quad \text{maximum depth of the state space (may be } \infty \text{)}
\]
Search strategies

- A *strategy* is defined by picking the *order of node expansion*.
- The *fringe* (also *frontier*) is a list of nodes that have been generated but not yet expanded.
- Strategies are evaluated along the following dimensions:
 - *completeness* – does it always find a solution if one exists?
 - *time complexity* – number of nodes generated/expanded
 - *space complexity* – maximum number of nodes in memory
 - *optimality* – does it always find a least-cost solution?
Search strategies

- A **strategy** is defined by picking the **order of node expansion**
- The **fringe** (also **frontier**) is a list of nodes that have been generated but not yet expanded.
- Strategies are evaluated along the following dimensions:
 - *completeness* – does it always find a solution if one exists?
 - *time complexity* – number of nodes generated/expanded
 - *space complexity* – maximum number of nodes in memory
 - *optimality* – does it always find a least-cost solution?
- Time and space complexity are measured in terms of
 - b – maximum **branching factor** of the search tree
 - d – depth of the least-cost solution
 - m – maximum depth of the state space (may be ∞)
Uninformed search strategies

- *Uninformed* strategies use only the information available in the problem definition
- I.e. except for the goal state, there is no notion of one state being “better” than another.
- Examples:
Uninformed search strategies

- *Uninformed* strategies use only the information available in the problem definition.
- I.e. except for the goal state, there is no notion of one state being “better” than another.
- Examples:
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search
Breadth-first search

Expand the shallowest unexpanded node

Implementation

fringe is a FIFO queue, i.e., new successors go at end

![Diagram](attachment:image.png)
Breadth-first search

Expand the shallowest unexpanded node

Implementation

fringe is a FIFO queue, i.e., new successors go at end

```
A
B C
D E F G
```
Breadth-first search

Expand the shallowest unexpanded node

Implementation

fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

Expand the shallowest unexpanded node

Implementation

fringe is a FIFO queue, i.e., new successors go at end
Properties of breadth-first search

Complete: ??
Properties of breadth-first search

Complete: Yes (if b is finite)

Time: ??
Properties of breadth-first search

Complete: Yes (if b is finite)

Time: $1 + b + b^2 + b^3 + \ldots + b^d = O(b^d)$

I.e., exponential in d

Space: ??
Properties of breadth-first search

Complete: Yes (if b is finite)

Time: $1 + b + b^2 + b^3 + \ldots + b^d = O(b^d)$
 l.e., exp. in d

Space: $O(b^d)$ (keeps every node in memory)

Optimal: ??
Properties of breadth-first search

Complete: Yes (if \(b \) is finite)

Time: \(1 + b + b^2 + b^3 + \ldots + b^d = O(b^d) \)

I.e., exp. in \(d \)

Space: \(O(b^d) \) (keeps every node in memory)

Optimal: Yes (if cost = 1 per step); not optimal in general

\(\text{Space} \) is the big problem; can easily generate nodes at 100MB/sec.
So 24hrs = 8640GB.
Uniform-Cost Search

• Expand the least-cost unexpanded node

• Implementation

 fringe = queue ordered by path cost, lowest first

• Equivalent to breadth-first if step costs all equal

• For the travel-in-Romania example, expand the node on the fringe for that city closest in distance to the city at the root (Arad).
Uniform-Cost Search

Complete: Yes, if step cost $\geq \epsilon$, for ϵ some small positive constant.

 - So NoOps of cost 0 can be a problem.

Time: $O(b^{\lceil C^*/\epsilon \rceil})$, where C^* is the cost of the optimal solution

Space: $O(b^{\lceil C^*/\epsilon \rceil})$

 - Time and space complexity can be worse than b^d.

Optimal: Yes

 - Nodes expanded in increasing order of $g(n)$ where $g(n)$ is the cost to get to node n.
Depth-First Search

Expand the deepest unexpanded node

Implementation

\textit{fringe} = LIFO queue, i.e., put successors at front
Depth-first search

Expand the deepest unexpanded node

Implementation

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand the deepest unexpanded node

Implementation

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand the deepest unexpanded node

Implementation

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand the deepest unexpanded node

Implementation

\textit{fringe} = LIFO queue, i.e., put successors at front
Depth-first search

Expand the deepest unexpanded node

Implementation

\textit{fringe} = LIFO queue, i.e., put successors at front
Depth-first search

Expand the deepest unexpanded node

Implementation

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand the deepest unexpanded node

Implementation

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand the deepest unexpanded node

Implementation

fringe $= \text{LIFO queue, i.e., put successors at front}$
Depth-first search

Expand the deepest unexpanded node

Implementation

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand the deepest unexpanded node

Implementation

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand the deepest unexpanded node

Implementation

fringe = LIFO queue, i.e., put successors at front
Properties of depth-first search

Complete: ??
Properties of depth-first search

Complete: No: fails in infinite-depth spaces, spaces with loops
 ⇒ Modify to avoid repeated states along path
 ⇒ Complete in finite spaces

Time: ??
Properties of depth-first search

Complete: No: fails in infinite-depth spaces, spaces with loops
\[\Rightarrow \text{Modify to avoid repeated states along path} \]
\[\Rightarrow \text{Complete in finite spaces} \]

Time: $O(b^m)$: terrible if m is much larger than d
- But if solutions are dense, may be much faster than breadth-first

Space: ??
Properties of depth-first search

Complete: No: fails in infinite-depth spaces, spaces with loops
⇒ Modify to avoid repeated states along path
⇒ Complete in finite spaces

Time: $O(b^m)$: terrible if m is much larger than d
- But if solutions are dense, may be much faster than breadth-first

Space: $O(bm)$, i.e., linear space!
Optimal: ??
Properties of depth-first search

Complete: No: fails in infinite-depth spaces, spaces with loops
⇒ Modify to avoid repeated states along path
⇒ Complete in finite spaces

Time: $O(b^m)$: terrible if m is much larger than d
 • But if solutions are dense, may be much faster than breadth-first

Space: $O(bm)$, i.e., linear space!

Optimal: No
Depth-Limited Search

Depth-limited search = depth-first search with depth limit \(l \),

- i.e., nodes at depth \(l \) have no successors

Recursive implementation:
The implementation simply calls a “helper” function (described on the next slide):

Function **Depth-Limited-Search**(\(\text{problem}, l \))

 ```
 returns soln/fail/cutoff
 Recursive-DLS(Make-Node(Initial-State[\( \text{problem} \)], problem, limit))
 ```
Depth-Limited Search

Recursive implementation:

Function **Recursive-DLS**(node, problem, limit) returns soln/fail/cutoff

cutoff-occurred? ← false
if Goal-Test(problem, State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node, problem) do
 result ← Recursive-DLS(successor, problem, limit-1)
 if result = cutoff then cutoff-occurred? ← true
 else if result ≠ failure then return result
if cutoff-occurred? then return cutoff else return failure

• Note: second edition has a bug in the recursive call!
Function \textit{Iterative-Deepening-Search}(\textit{problem}) \textbf{returns} a solution

inputs: problem a problem

for depth $\leftarrow 0$ to ∞ do

\hspace{1em} result \leftarrow \textit{Depth-Limited-Search}(\textit{problem},depth)

\hspace{1em} if result \neq cutoff then return result

end
Iterative deepening search $l = 0$
Iterative deepening search \(l = 1 \)
Iterative deepening search $l = 2$
Iterative deepening search $l = 3$

Limit = 3
Properties of iterative deepening search

Complete: ??
Properties of iterative deepening search

Complete: Yes
Time: ??
Properties of iterative deepening search

Complete: Yes

Time: \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space: ??
Properties of iterative deepening search

Complete: Yes

Time: \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space: \(O(bd)\)

Optimal:
Properties of iterative deepening search

Complete: Yes

Time: \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space: \(O(bd)\)

Optimal: Yes, if step cost = 1
Properties of iterative deepening search

- Comparison for $b = 10$ and $d = 5$, solution at far right leaf:
 \[N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450 \]
 \[N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 111,100 \]

- For a large search space with unknown depth of solution, IDS is usually best.
- For BFS, we have the following ratio of IDS to BFS:
 \[\begin{array}{c|c}
 b & \text{Ratio} \\
 \hline
 2 & 3 \\
 3 & 2 \\
 5 & 1.5 \\
 10 & 1.2 \\
 \end{array} \]

- Can be modified to explore uniform-cost tree
Properties of iterative deepening search

- Comparison for $b = 10$ and $d = 5$, solution at far right leaf:
 \[N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450\]
 \[N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 111,100\]

- For a large search space with unknown depth of solution, IDS is usually best.
Properties of iterative deepening search

- Comparison for \(b = 10 \) and \(d = 5 \), solution at far right leaf:
 \[
 N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450 \\
 N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 \\
 + 999,990 = 111,100
 \]

- For a large search space with unknown depth of solution, IDS is usually best.

- For BFS, we have the following ratio of IDS to BFS:
 \[
 \begin{array}{c|c}
 b & \text{Ratio} \\
 \hline
 2 & 3 \\
 3 & 2 \\
 5 & 1.5 \\
 10 & 1.2
 \end{array}
 \]
Properties of iterative deepening search

- Comparison for $b = 10$ and $d = 5$, solution at far right leaf:
 \[
 N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
 \]
 \[
 N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000
 + 999,990 = 111,100
 \]

- For a large search space with unknown depth of solution, IDS is usually best.

- For BFS, we have the following ratio of IDS to BFS:

<table>
<thead>
<tr>
<th>b</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
</tr>
</tbody>
</table>

- Can be modified to explore uniform-cost tree
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>b^{d+1}</td>
<td>$b^{\lceil C^*/\epsilon \rceil}$</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
</tr>
<tr>
<td>Space</td>
<td>b^{d+1}</td>
<td>$b^{\lceil C^*/\epsilon \rceil}$</td>
<td>b^m</td>
<td>b^l</td>
<td>bd</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes*</td>
</tr>
</tbody>
</table>

*: If b is finite.
Repeated states

• Failure to detect repeated states can turn a linear problem into an exponential one!

If we detect repeated states, then our search algorithm amounts to searching a graph rather than a tree.

• Keep a list of encountered nodes, called the closed list.
Graph search

Function $\text{Graph-Search}(\text{problem}, \text{fringe})$ returns a solution, or failure

1. $\text{closed} \leftarrow \text{an empty set}$
2. $\text{fringe} \leftarrow \text{Insert}(\text{Make-Node(Initial-State[problem]}), \text{fringe})$

loop do

3. if fringe is empty then return failure
4. $\text{node} \leftarrow \text{Remove-Front}(\text{fringe})$
5. if Goal-Test($\text{problem}, State[\text{node}]$) then return node
6. if State[\text{node}] is not in closed then

7. add State[\text{node}] to closed
8. $\text{fringe} \leftarrow \text{InsertAll}(\text{Expand(\text{node,problem}}), \text{fringe})$

end
Summary

- Problem formulation usually requires abstracting from real-world details to define a state space that can feasibly be explored.
- Variety of uninformed search strategies.
- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms.
- Graph search can be exponentially more efficient than tree search.