Relational Algebra and Calculus

Chapter 4

Relational Query Languages

❖ **Query languages**: Allow manipulation and retrieval of data from a database.

❖ Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.

❖ Query Languages ≠ programming languages!
 - QLs not expected to be “Turing complete”.
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.
Formal Relational Query Languages

Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and for implementation:

1. **Relational Algebra**: More procedural, very useful for representing execution plans.
2. **Relational Calculus**: Lets users describe what they want, rather than how to compute it. (Non-procedural, declarative.)

☛ Understanding Algebra & Calculus is key to understanding SQL and query processing!

Preliminaries

- A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - *Schemas* of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the *result* of a given query is also fixed! Determined by definition of query language constructs.

- Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL.
Example Instances

- “Sailors” and “Reserves” relations for our examples.
- We’ll use positional or named field notation, assume that names of fields in query results are ‘inherited’ from names of fields in query input relations.

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Relational Algebra

- **Selection** (σ) Selects a subset of rows from relation.
- **Projection** (π) Deletes unwanted columns from relation.
- **Cross-product** (\times) Allows us to combine two relations.
- **Set-difference** (−) Tuples in reln. 1, but not in reln. 2.
- **Union** (\cup) Tuples in relation 1 or in relation 2.
Relational Algebra (contd.)

- Additional operations:
 - Intersection, join, division, renaming.
 - Not essential, because can be implemented using the five basic operations.
 - But (very!) useful.
- Since each operation returns a relation, operations can be composed!

Algebra is closed!

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why??)
- Note: real systems typically don’t do duplicate elimination unless the user explicitly asks for it. (Why not?)
Projection

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

\[\pi_{\text{snname, rating}}(S2) \]

\[\pi_{\text{age}}(S2) \]

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation!
 Operator composition.

Database Management Systems, R. Ramakrishnan and J. Gehrke
Selection

\[\sigma_{\text{rating} > 8}(S2) \]

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

\[\pi_{\text{sname}, \text{rating}}(\sigma_{\text{rating} > 8}(S2)) \]

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be **union-compatible**:
 - Same number of fields.
 - ‘Corresponding’ fields have the same type.
- What is the **schema** of result?

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

\[S1 \cup S2 \]

\[S1 \cap S2 \]
Cross-Product

- Each row of the one relation is paired with each row of the other relation.
- Result schema has one field per field of both input relations, with field names ‘inherited’ if possible.
- In the result, there may be two fields with the same name, e.g. both S1 and R1 have a field called sid.
- Then, apply the renaming operator, e.g.
 \[\rho \left(C(1 \rightarrow \text{sid}1, 5 \rightarrow \text{sid}2) \right), \ S1 \times R1 \]

Cross-Product

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>22</td>
<td>10/10/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>22</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>
Joins

- **Condition Join**: \(R \bowtie_c S = \sigma_c (R \times S) \)

<table>
<thead>
<tr>
<th>(sid)</th>
<th>surname</th>
<th>rating</th>
<th>age</th>
<th>(sid)</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

\[S_l \bowtie S_l \text{.sid < } R_l \text{.sid} \]

- Result schema same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a *theta-join*.

Joins

- **Equi-Join**: A special case of condition join where the condition \(c \) contains only *equalities*.

<table>
<thead>
<tr>
<th>sid</th>
<th>surname</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

\[S_l \bowtie_{\text{sid}} R_l \]

- Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- **Natural Join**: Equijoin on *all* common fields.
Division

- Not supported as a primitive operator, but useful for expressing queries like:

 Find sailors who have reserved **all** boats.

- Let A have 2 fields, x and y; B have only field y:
 - $A/B = \{ \{x\} \mid \exists \{x, y\} \in A \land \{y\} \in B \}$
 - i.e., A/B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an xy tuple (reservation) in A.

- In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division

sno	pno		sno	pno		sno	pno			
-----	-----									
s1	p1		p2	p2		p1	p1		s1	p1
s1	p2		p2	p4		p2	p2		s2	p2
s1	p3		p4			p4	p4		s4	p4
s2	p1								s1	p1
s2	p2								s2	p2
s3	p2								s3	p2
s4	p2								s4	p2
s4	p4								s4	p4

\[A \quad A/B1 \quad A/B2 \quad A/B3 \]
Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
 (Also true of joins, but joins are so common that systems implement joins specially.)

- Idea: For A/B, compute all x values that are not ‘disqualified’ by some y value in B.
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

 \[\pi_x (\pi_x(A) \times B) - A \]

 Disqualified x values:

 \[\pi_x (\pi_x(A) \times B) - A \]

 A/B: \[\pi_x (A) \] — all disqualified tuples

Find names of sailors who’ve reserved boat #103

- Solution 1:
 \[\pi_{\text{sname}} (\sigma_{\text{bid}=103} (\text{Reserves}) \bowtie \text{Sailors}) \]

- Solution 2:
 \[\rho (\text{Temp1, } \sigma_{\text{bid}=103} (\text{Reserves})) \]
 \[\rho (\text{Temp2, Temp1 } \bowtie \text{Sailors}) \]
 \[\pi_{\text{sname}} (\text{Temp2}) \]

- Solution 3:
 \[\pi_{\text{sname}} (\sigma_{\text{bid}=103} (\text{Reserves} \bowtie \text{Sailors})) \]
Find names of sailors who’ve reserved a red boat

- Information about boat color only available in Boats; so need an extra join:
 \[\pi_{sname}(\sigma_{\text{color} = \text{red}}(\text{Boats}) \bowtie \text{Reserves} \bowtie \text{Sailors}) \]

- A more efficient solution:
 \[\pi_{sname}(\pi_{\text{sid}}(\sigma_{\text{color} = \text{red}}(\text{Boats}) \bowtie \text{Res} \bowtie \text{Sailors})) \]

- A query optimizer can find this given the first solution!

Find sailors who’ve reserved a red or a green boat

- Can identify all red or green boats, then find sailors who’ve reserved one of these boats:
 \[\rho(\pi_{\text{color} = \text{red} \lor \text{color} = \text{green}}(\text{Tempboats} \bowtie \text{Boats})) \]

- Can also define Tempboats using union! (How?)

- What happens if \(\lor \) is replaced by \(\land \) in this query?
Find sailors who’ve reserved a red and a green boat

- Previous approach won’t work! Must identify sailors who’ve reserved red boats, sailors who’ve reserved green boats, then find the intersection (note that sid is a key for Sailors):

\[
\rho (\text{Tempred}, \pi_{\text{sid}}((\sigma_{\text{color}=\text{red}}, \text{Boats}) \bowtie \text{Reserves}))
\]

\[
\rho (\text{Tempgreen}, \pi_{\text{sid}}((\sigma_{\text{color}=\text{green}}, \text{Boats}) \bowtie \text{Reserves}))
\]

\[
\pi_{\text{sname}}((\text{Tempred} \cap \text{Tempgreen}) \bowtie \text{Sailors})
\]

Find the names of sailors who’ve reserved all boats

- Uses division; schemas of the input relations to / must be carefully chosen:

\[
\rho (\text{Tempsids, } (\pi_{\text{sid,bid}} \text{Reserves}) / (\pi_{\text{bid}} \text{Boats}))
\]

\[
\pi_{\text{sname}}(\text{Tempsids} \bowtie \text{Sailors})
\]

- To find sailors who’ve reserved all ‘Interlake’ boats:

\[
\ldots / \pi_{\text{bid}}(\sigma_{\text{bname}=\text{Interlake}} \text{Boats})
\]
Relational Calculus

- Comes in two flavours: *Tuple relational calculus* (TRC) and *Domain relational calculus* (DRC).
- Calculus has *variables*, *constants*, *comparison ops*, *logical connectives* and *quantifiers*.
 - **TRC**: Variables range over (i.e., get bound to) *tuples*.
 - **DRC**: Variables range over *domain elements* (= field values).
 - Both TRC and DRC are simple subsets of first-order logic.
- Expressions in the calculus are called *formulas*. An answer tuple is essentially an assignment of constants to variables that make the formula evaluate to *true*.

Domain Relational Calculus

- Query has the form: \(\{x_1, x_2, \ldots, x_n \mid p(x_1, x_2, \ldots, x_n) \} \)
- Answer includes all tuples \(\{x_1, x_2, \ldots, x_n \} \) that make the formula \(p(x_1, x_2, \ldots, x_n) \) be true.
- Formula is recursively defined, starting with simple *atomic formulas* (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the *logical connectives*.
DRC Formulas

- **Atomic formula:**
 - \(\langle x_1, x_2, \ldots, x_n \rangle \in R_{\text{name}}\), or
 - \(X \; \text{op} \; Y\), or \(X \; \text{op} \; \text{constant}\)
 - \(\text{op}\) is one of \(<, >, =, \leq, \geq, \neq\)

- **Formula:**
 - an atomic formula, or
 - \(\neg p, p \land q, p \lor q\), where \(p\) and \(q\) are formulas, or
 - \(\exists X \; (p(X))\), where variable \(X\) is *free* in \(p(X)\), or
 - \(\forall X \; (p(X))\), where variable \(X\) is *free* in \(p(X)\)

Free and Bound Variables

- The use of quantifiers \(\exists X\) and \(\forall X\) in a formula is said to *bind* \(X\).
 - A variable that is not bound is **free**.

- Let us revisit the definition of a query:
 \[
 \{\langle x_1, x_2, \ldots, x_n \rangle \mid p(\langle x_1, x_2, \ldots, x_n \rangle)\}
 \]

- There is an important restriction: the variables \(x_1, \ldots, x_n\) that appear to the left of `|` must be the *only* free variables in the formula \(p(...).\)
Find all sailors with a rating above 7

\[
\{ \langle I,N,T,A \rangle | \langle I,N,T,A \rangle \in \text{Sailors} \land T > 7 \}
\]

- The condition \(\langle I,N,T,A \rangle \in \text{Sailors} \) ensures that the domain variables \(I, N, T \) and \(A \) are bound to fields of the same Sailors tuple.
- The term \(\langle I,N,T,A \rangle \) to the left of `\(|` (which should be read as such that) says that every tuple \(\langle I,N,T,A \rangle \) that satisfies \(T > 7 \) is in the answer.
- How to find sailors who are older than 18 or have a rating under 9, and are called ‘Joe’?

Find sailors rated > 7 who’ve reserved boat #103

\[
\{ \langle I,N,T,A \rangle | \langle I,N,T,A \rangle \in \text{Sailors} \land T > 7 \land \\
\exists Ir, Br, D \ (\langle Ir, Br, D \rangle \in \text{Reserves} \land Ir = I \land Br = 103) \}
\]

- We have used \(\exists Ir, Br, D \ (\ldots) \) as a shorthand for \(\exists Ir \ (\exists Br \ (\exists D \ (\ldots))) \)
- Note the use of \(\exists \) to find a tuple in Reserves that ‘joins with’ the Sailors tuple under consideration.
Find sailors rated > 7 who’ve reserved a red boat

\[
(I,N,T,A), (I,N,T,A) \in \text{Sailors} \land T > 7 \land \\
\exists I,r,Br,D \ (I,r,Br,D) \in \text{Reserves} \land I = r \land \\
\exists B, BN, C \ ((B, BN, C) \in \text{Boats} \land B = Br \land C = \text{‘red’})
\]

❖ Observe how the parentheses control the scope of each quantifier’s binding.
❖ This may look cumbersome, but with a good user interface, it is very intuitive. (Wait for QBE!)

Find sailors who’ve reserved all boats

\[
(I,N,T,A)
\forall B, BN, C \ (B, BN, C) \in \text{Boats} \\
\exists I,r,Br,D \ (I,r,Br,D) \in \text{Reserves} \land I = r \land B = B
\]

❖ Find all sailors I such that for each 3-tuple \(B, BN, C\) either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor I has reserved it.
Find sailors who’ve reserved all boats (again!)

\[
\langle I, N, T, A \rangle \in \text{Sailors} \land \\
\forall \langle B, BN, C \rangle \in \text{Boats} \\
\exists \langle Ir, Br, D \rangle \in \text{Reserves} \{ I = Ir \land Br = B \}
\]

- Simpler notation, same query. (Much clearer!)
- To find sailors who’ve reserved all red boats:

\[
\ldots \quad \{ C \neq 'red' \lor \exists \langle Ir, Br, D \rangle \in \text{Reserves} \{ I = Ir \land Br = B \} \}
\]

Unsafe Queries, Expressive Power

- It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called unsafe.
 - e.g., \(|S| \neg (S \in \text{Sailors}) \)
- It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/safe relational calculus.
Summary

❖ The relational model has rigorously defined query languages that are simple and powerful.
❖ Relational algebra is more procedural; useful as internal representation for query evaluation plans.
❖ Several ways of expressing a given query; a query optimizer should choose the most efficient version.

Summary (contd.)

❖ Relational calculus is non-procedural, and users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness).
❖ Algebra and safe calculus have same expressive power, leading to the notion of relational completeness.
❖ All practical query languages should be relationally complete.