Closure and Lossless Decomposition
Boyce-Codd Normal Form

- A relation schema R is in BCNF if for all functional dependencies in F^+ of the form $\alpha \rightarrow \beta$ at least one of the following holds
 - $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - α is a superkey for R

- $bor_loan = (customer_id, loan_number, amount)$ is not in BCNF
 - $loan_number \rightarrow amount$ holds on bor_loan but $loan_number$ is not a superkey
Decomposing into BCNF

• For schema R and a non-trivial dependency \(\alpha \rightarrow \beta \) causing a violation of BCNF, decompose R into

 – \((\alpha \cup \beta)\): \(\alpha\) is the key
 – \((R - (\beta - \alpha))\)

• \textit{bor_loan} = (\textit{customer_id, loan_number, amount}), \textit{loan_number} \rightarrow \textit{amount}

 – (loan_number, amount)
 – (customer_id, loan_number)
Third Normal Form

• A relation schema R is in the third normal form (3NF) if for all $\alpha \rightarrow \beta$ in F^+ at least one of the following holds
 – $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
 – α is a superkey for R
 – Each attribute A in $\beta - \alpha$ is contained in a candidate key for R
 • Each attribute may be in a different candidate key
• If a relation is in BCNF it is in 3NF
 – In BCNF one of the first two conditions above must hold
• The third condition is a minimal relaxation of BCNF to ensure dependency preservation
Comparison of BCNF and 3NF

• It is always possible to decompose a relation into a set of relations that are in 3NF such that the decomposition is lossless and the dependencies are preserved.

• It is always possible to decompose a relation into a set of relations that are in BCNF such that the decomposition is lossless.
 – It may not be possible to preserve all functional dependencies.
Using BCNF and 3NF

• How can we generate lossless decompositions into BCNF and 3NF?
• How can we test if a decomposition is dependency-preserving?
• Some critical operations
 – If $\alpha \rightarrow \beta$, is α a superkey?
 – To preserve all functional dependencies F, what is the minimal set of functional dependencies that we need to preserve?
Closure of Attribute Sets

- Given a set of attributes \(\alpha \), the closure of \(\alpha \) under \(F \) (denoted by \(\alpha^+ \)) is the set of attributes that are functionally determined by \(\alpha \) under \(F \)
 - Application: whether \(\alpha \) is a super key?
- Algorithm to compute \(\alpha^+ \), the closure of \(\alpha \) under \(F \)

\[
\text{result} := \alpha; \\
\text{while} \ (\text{changes to result}) \ \text{do} \\
\quad \text{for each} \ \beta \rightarrow \gamma \ \text{in} \ F \ \text{do} \\
\quad \quad \text{begin} \\
\quad \quad \quad \text{if} \ \beta \subseteq \text{result} \ \text{then} \ \text{result} := \text{result} \cup \gamma \\
\quad \quad \text{end}
\]
Example of Attribute Set Closure

- $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- $(AG)^+$
 1. result = AG
 2. result = ABCG (A \rightarrow C and A \rightarrow B)
 3. result = ABCGH (CG \rightarrow H and CG \subseteq AGBC)
 4. result = ABCGHI (CG \rightarrow I and CG \subseteq AGBCH)

- Is AG a candidate key?
 - Is AG a super key?
 - Does AG \rightarrow R?
 - Yes, $(AG)^+ \supseteq R$
 - Is any subset of AG a superkey?
 - Does A \rightarrow R? Is $(A)^+ \supseteq R$?
 - Does G \rightarrow R? Is $(G)^+ \supseteq R$?
Uses of Attribute Closure

• Testing for superkey: check if α^+ contains all attributes of R

• Testing functional dependencies
 – To check if a functional dependency $\alpha \rightarrow \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$

• Computing closure of F
 – For each $\gamma \subseteq R$, find the closure γ^+
 – For each $S \subseteq \gamma^+$, output a functional dependency $\gamma \rightarrow S$
Armstrong’s Axioms

• Finding F⁺
 – (reflexivity) If $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$
 – (augmentation) If $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$
 – (transitivity) If $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$

• These rules are
 – Sound: generate only functional dependencies that actually hold
 – Complete: generate all functional dependencies that hold
Procedure for Computing F^+

$F^+ = F$
repeat
 for each functional dependency f in F^+
 apply reflexivity and augmentation rules on f
 add the resulting functional dependencies to F^+
 for each pair of functional dependencies f_1 and f_2 in F^+
 if f_1 and f_2 can be combined using transitivity
 then add the resulting functional dependency to F^+
 until F^+ does not change any further
Redundancy among Dependencies

• \(A \rightarrow C \) is redundant in: \(\{A \rightarrow B, \ B \rightarrow C\} \)
• Parts of a functional dependency may be redundant
 – On left hand side of a rule: \(\{A \rightarrow B, \ B \rightarrow C, \ AC \rightarrow D\} \)
 can be simplified to \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow D\} \)
 – On right hand side of a rule: \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow CD\} \)
 can be simplified to \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow D\} \)

• A **canonical cover** of \(F \) is a “minimal” set of functional dependencies equivalent to \(F \), having no redundant dependencies or redundant parts of dependencies
Extraneous Attributes

• Consider functional dependency $\alpha \rightarrow \beta$ in F
 – Attribute A is extraneous in α if $A \in \alpha$ and F logically implies $(F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - A) \rightarrow \beta\}$.
 – Attribute A is extraneous in β if $A \in \beta$ and the set of functional dependencies $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F
• Implication in the opposite direction is trivial in each of the cases above, since a “stronger” functional dependency always implies a “weaker” one
Extraneous Attributes – Example

• Example: Given $F = \{ A \rightarrow C, AB \rightarrow C \}$

 B is extraneous in $AB \rightarrow C$ because $\{ A \rightarrow C, AB \rightarrow C \}$ logically implies $A \rightarrow C$ (i.e. the result of dropping B from $AB \rightarrow C$)

• Example: Given $F = \{ A \rightarrow C, AB \rightarrow CD \}$

 C is extraneous in $AB \rightarrow CD$ since $AB \rightarrow C$ can be inferred even after deleting C
Testing Extraneous Attributes

- Consider functional dependency $\alpha \rightarrow \beta$ in F
- To test if attribute $A \in \alpha$ is extraneous in α
 - Compute $(\alpha - A)^+$ using the dependencies in F
 - If $(\alpha - A)^+$ contains A, A is extraneous
- To test if attribute $A \in \beta$ is extraneous in β
 - Compute α^+ using only the dependencies in $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$,
 - if α^+ contains A, A is extraneous
Canonical Cover

- A canonical cover for F is a set of dependencies F_c such that
 - F and F_c are logically equivalent to each other
 - F logically implies all dependencies in F_c
 - F_c logically implies all dependencies in F
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique
Canonical Cover Computation

repeat
 use the union rule to replace any dependencies in F
 $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$
 find a functional dependency $\alpha \rightarrow \beta$ with an extraneous attribute either in α or in β
 if an extraneous attribute is found,
 then delete it from $\alpha \rightarrow \beta$
 until F does not change
• The union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied
Example

- $R = (A, B, C)$
 - $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - Now, $F = \{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$
 - $B \rightarrow C$ is already present
 - Now, $F = \{A \rightarrow BC, B \rightarrow C\}$
 - C is extraneous in $A \rightarrow BC$
 - Check if $A \rightarrow C$ is logically implied by $A \rightarrow B$ and the other dependencies
 - Yes: using transitivity on $A \rightarrow B$ and $B \rightarrow C$.
 - Can use attribute closure of A in more complex cases
- The canonical cover is: $\{A \rightarrow B, B \rightarrow C\}$
Lossless-join Decomposition

• If R is decomposed into R_1 and R_2, we require that for all possible relations r on schema R satisfies $r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$

• A decomposition of R into R_1 and R_2 is **lossless join** if and only if at least one of the following dependencies is in F^+
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$
Example

- \(R = (A, B, C), F = \{A \rightarrow B, B \rightarrow C\} \)
 - Can be decomposed in two different ways
- \(R_1 = (A, B), \; R_2 = (B, C) \)
 - Lossless-join decomposition:
 \[R_1 \cap R_2 = \{B\} \text{ and } B \rightarrow BC \]
 - Dependency preserving
- \(R_1 = (A, B), \; R_2 = (A, C) \)
 - Lossless-join decomposition:
 \[R_1 \cap R_2 = \{A\} \text{ and } A \rightarrow AB \]
 - Not dependency preserving
 (cannot check \(B \rightarrow C \) without computing \(R_1 \Join R_2 \))
Dependency Preservation

• Let F_i be the set of dependencies F^+ that includes only attributes in R_i
 – A decomposition is dependency preserving, if $(F_1 \cup F_2 \cup \ldots \cup F_n)^+ = F^+$
 – If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive
Testing Dependency Preservation

- To check if a dependency $\alpha \rightarrow \beta$ is preserved in a decomposition of R into R_1, R_2, \ldots, R_n

 $result = \alpha$
 repeat
 for each R_i in the decomposition

 $t = (result \cap R_i)^+ \cap R_i$, result = result $\cup t$

 until result does not change

 - If $result$ contains all attributes in β, then the functional dependency $\alpha \rightarrow \beta$ is preserved

- We apply the test on all dependencies in F to check if a decomposition is dependency preserving

- This procedure takes polynomial time

 - Compute F^+ and $(F_1 \cup F_2 \cup \ldots \cup F_n)^+$ requires exponential time
Example

- \(R = (A, B, C) \)
 \(F = \{A \rightarrow B, B \rightarrow C\} \)
 Key = \{A\}
- \(R \) is not in BCNF
- Decomposition \(R_1 = (A, B), \ R_2 = (B, C) \)
 - \(R_1 \) and \(R_2 \) are in BCNF
 - Lossless-join decomposition
 - Dependency preserving
Summary and To-Do List

• Closure of attribute sets: concept, computation, and applications
• Canonical cover: concept and computation
• Lossless join decomposition
• Testing dependency preservation
• Read Sections 7.4.2-7.4.5
• Assignment 2