Usability Evaluation

Why?

- Organizational perspective:
 - To make a better product
 - Is it usable and useful?
 - Does it improve productivity?
 - Reduce development and support costs
- Designer & developer perspective:
 - Understanding the real world
 - What should it do?
 - Compare designs
 - Is it good enough?
 - Does it do what it should do?
Who?

- Who is your target population?
- Do you want expert usability advice or user feedback?
- Who do you have access to?
- Who are you going to select to evaluate?
- Who will conduct the evaluation?

What?

- What do you want to know?
 - What do users want?
 - Is the product usable? Is it useful?
 - What does the system need to do?
 - How easy is the product to learn?
 - How powerful is the product for expert users?
 - Does it do what it claims to?
 - What problems occur when using the system?
- What scope of the product will you evaluate?
 - Full functionality vs. prototype components
Where?

• Where will the study take place?
 – Field study
 – Lab Study

When?

• When in the design/development cycle will your evaluation take place?
• Will there be several iterations of evaluation?
• How long will it last?
Usability Methods

- Inquiry
- Inspections
- Testing

- www.best.com/~jthom/usability/

Usability Methods - Inquiry

- Contextual Inquiry
 - Understanding the context in which a product is used
 - The user is a partner in the design process
 - The usability design process must have a focus
- Field Observation
 - Artifacts are physical object in use at a site
 - Outcroppings are noticeable physical traits that characterize the site
- Interviews and Focus Groups
 - Ask users about their experiences and preferences with your product
 - Focus groups enable you to identify common problems that people experience.
Usability Methods - Inquiry

• Surveys
 – Ad hoc interviews, where the interviewer asks a set list of questions and records the responses.

• Questionnaires
 – A written list of questions that you distribute to your users

• Journaled Sessions
 – They are often used as a remote inquiry method for software user interface evaluation.

Usability Methods - Inquiry

• Self-Reporting Logs
 – Paper and pencil journals where users log their actions and observations while interacting with a product.

• Screen Snapshots
 – The user takes screen snapshots at different times during the execution of a task or a series of tasks.
Usability Methods - Inspection

• Heuristic Evaluation
 – Usability specialists judge whether each element of a UI follows established usability principles.

• Cognitive Walkthrough
 – The person conducting the walkthrough constructs scenarios from a specification or early prototype and role plays the part of a user working with that interface.

• Formal Usability Inspections
 – Adapts the software inspection methodology to usability evaluation.
 – Typically the roles include: moderator, owner, recorder, and inspectors

Usability Methods - Inspection

• Pluralistic Walkthroughs
 – Meetings where users, developers, and usability professionals step through a scenario, discussing and evaluating each element of interaction.

• Feature Inspection
 – Analyze the feature set of a product, usually given end user scenarios.

• Consistency Inspections
 – These are used to ensure consistency across multiple products from the same development effort.
Usability Methods - Inspection

• Standards Inspections
 – Ensure compliance with industry standards. (e.g. software products for the Windows environment should have common elements, such as the same functions on the File menu, Help menu, etc.)

• Guideline Checklists
 – Usually checklists are used in conjunction with many of the usability inspection methods. (The checklist gives the inspectors a basis by which to compare the product.)

Usability Methods - Testing

• #1 determine what you are trying to find out
 – what do you want to know?
 – describe this goal in a few objectives

• #2 design your test
 – identify your users
 • should match the expected user population as closely as possible
 • determine sample size, cost vs. precision -- rule of thumb at least 10 subjects
 – identify your variables
 • independent variables (controlled)
 • dependent variables (measured)
 • Your design must also account for possible confounding factors
Usability Methods - Testing

• #2 design your test (continued)
 – experimental design
 • how you will order and run your experiment to eliminate non-interesting variables from the analysis
 – between-groups and within-groups
 – random assignment and counter-balancing
 – develop the tasks the users will perform
 – specify the experiment equipment
 – methods and data collection techniques to be used
 – physical set-up
 – Identify required research personnel
 – decide how you will analyze the results recorded
 – e.g. will you generate statistics?

Usability Methods - Testing

• #3 get your users
 – selection from population
 • how narrow will your selection be?
 • selection procedure
 • Gather information from your subjects

• #4 setup the test
 – setup all components of the equipment and make sure it is all working

• #5 run the test and collect the data
 – follow your experimental design EXACTLY

• #6 analyze the data
 – find the big problems first
 – summarize the quantitative and qualitative data gathered
Usability Methods - Testing

• Thinking aloud protocol
 – ask the participant to vocalize his/her thoughts, feelings, and opinions while interacting with the product
• Co-discovery method
 – have two participants perform the task together
• Question-asking protocol
 – prompt the user to vocalize his/her thoughts, feeling and opinions by asking direct questions about the product
• Performance measurement
 – usability test designed to determine hard, quantitative data
 – quantitative data is gathered

Theory vs. Reality

• Time constraints
• Financial constraints
• Technology constraints
• Working with human subjects
• Ethical approval
• Video data
• Planning, planning and more planning
Methodology

- Methodology
 - techniques used to measuring phenomena, manipulate phenomena
 - or control the impact of various phenomena

- Methods
 - the tools (instruments, techniques, and procedures) to gather and analyze information
 - each method can do different things
 - methods are inherently flawed, though each is flawed differently
 - use multiple methods can add strength by offsetting each other’s weaknesses

credible empirical knowledge requires consistency or convergence of evidence across studies based on different methods

Research Strategies

- Research evidence in the social and behavioral sciences
 - involves somebody doing something in some situation
 - actors
 - who
 - humans (individuals, groups, organizations, communities) whose behaviour is being studied
 - behaviour
 - what
 - all aspects of states and actions of the humans that might be of interest
 - context
 - when & where
 - all relevant temporal, locational, and situational features of the environment
3 main criteria

- A. Generalizability
 - how generalizable your results are to a population of actors

- B. Precision
 - how precise your measurement of behaviours is as well as precise control over extraneous factors that are not being studies

- C. Realism
 - how realistic the situation or context of where you gathered the evidences is in relation to the contexts to which you want your evidence to apply

- Try to maximize all three criteria, A, B and C

Field strategies

- study “natural” behaviours

- Field study
 - make direct observations of “natural”, ongoing systems, while intruding on and disturbing those systems as little as possible
 - i.e. ethnography, case studies

- Field experiment
 - works within an ongoing natural system as unobtrusively as possible except it manipulates one major feature
 - manipulates one feature in order to assess effect on other behaviours of the system
 - a compromised strategy, the researcher gives up some of the unobtrusiveness of the plain field study, to gain more precision
Experimental strategies

- Involves concocted rather than natural settings

- Lab experiment
 - deliberately constructs a situation or context, defines the rules, and then has individuals perform tasks related to the concocted system
 - can study behaviours with high precision by controlling extraneous factors

- Experimental simulation
 - construct a situation but make it closely resemble a real situation
 - flight simulators
 - fine line between precision and realism

Respondent strategies

- Systematic gathering of responses

- Sample survey
 - obtain evidence to estimate distribution of some variables with a specific population
 - careful sampling of actors from that population and systematically eliciting responses about the material of interest
 - public opinion surveys

- Judgment study
 - researcher concentrates on obtaining information about the properties of a certain set of stimulus
 - psychophysical
Theoretical strategies

- Non-empirical strategies, does not involve “actors behaving in context”

- Formal theory
 - Researchers focuses on formulating general relations among a number of variables of interest
 - These hypotheses are intended to hold over a broad range of populations

- Computer simulation
 - Attempt to model a real world system
 - The system is complete and closed, without any behavior by any participants
 - Any behaviour outcomes are logical predictions from the theory the researcher built into the model

Strategic issues

- Each strategy has inherent weaknesses and potential strengths

- Since all strategies are flawed, but flawed in different ways, need to use more than one strategy, carefully selected to complement each other in their strengths and weaknesses
Comparison techniques

• baserates
 – how often (at what rate or what proportion of time) does Y occur?
 – if you don’t know how often Y occurs in the general case, then how can you decide whether the rate of Y is some particular case is notably high or low
 • high rate of birth defects among infants born to women who worked jobs involving continual use of video display tubes
 – debate on baserates is common in the behavioural sciences
 • how much is too much?

• differences
 – asks whether Y is present (or at a high value) under conditions where X is present (or at a high value) or vice versa

Comparison techniques (continued)

• correlations
 – asks whether there is a systematic covariation in the values of two (or more) properties
 • if X is high for some case is it likely that Y will also be high for that case
 • and if X is low for some case, is it likely the Y will also be low for that case
 – a high, positive correlation between X & Y means that when X is high, Y is also likely to be high and when X is low, Y is also likely to be low
 – a high, negative correlation between X&Y means high X values will indicate low Y values and vice versa
 – low or no correlation implies that knowing X does not give any indication about the likely value of Y
 • X has no predictive power with respect to Y
 • X & Y do not covary
 – also possible to have a strong, nonlinear correlation
Randomization

• can’t control all potential factors
• random assignment of cases to conditions
 – helps to control these extraneous factors
 – strengthen the credibility of the information
 – effectiveness depends on the number of cases being allocated
 – random allocation procedure: each case must be equally likely to end up in any given combination of conditions
• does not guarantee an equal distribution of any or all potentially extraneous factors, instead makes an unequal distribution highly unlikely (but not impossible)
• if you do end up with an unequal distribution, this could confound your results

Sampling

• Basis for choosing the cases that are to be included in your study out of a larger population of potential cases
 – effects the credibility of your results
 – statistical reasoning requires that the cases in the study be a “random sample” of the population to which the results apply
• “do you have a random sample” vs. “what is the nature of the population of which you actually have a random sample”
• you do not actually “select a random sample”, you select a sample using “a random procedure”
 – no guarantee that the resulting sample will mirror the population
• sample size is important for the credibility of experimental results
Validity

- Internal validity
 - the degree to which the results of a study permit you to make strong inferences about causal relations
 - did it occur by chance?
 - Are other factors causing the effects?
 - Depends on how well you can rule out all other plausible rival hypotheses
- Construct validity
 - how well defined are your theoretical ideas?
- External validity
 - how confident you are that your results will hold upon replication and how generalizable are the results
 - impacted by features of the study (size, nature, sampling, setting, procedures, etc.)
 - no one study has external validity alone

Data collection methods

- Self-Reports
 - i.e., participant fills out a questionnaire
 - participants always know that their behaviour is being recorded
- Observations
 - i.e., Watching someone interact with a piece of software and recording behaviours of interest
 - records of behaviour made by the investigator, an assistant, or by a physical instrument
 - Observations by a Visible Observer
 - participants know that they are being observed
 - Observations by a Hidden Observer
 - participants do not know that they are being observed
Data collection methods (2)

- Archival records
 - analyze material in existing archives
 - records were gathered external to the research activities
 - i.e., public records of births, deaths, marriages, etc.
- Records of Public Behaviour
 - participants were aware that the behaviour was likely to be recorded and used
 - political speeches
- Records of Private Behaviour
 - participant may not know their behaviour will be used later for research (diary)
 - or the results are not affected by the participant’s awareness that the results will become public record (statistical data)

Data collection methods (3)

- Trace measures
 - records of behaviour are made by the behaviour itself but without the participants being aware that they are making the record
 - dog-eared pages
 - like self-reports in that the participants do the recording
 - unlike self-reports in that they are normally not aware that there will be a record of their behaviour and that it will be used for research purposes
Self-reports

- questionnaire responses, interview protocols, rating scales, paper and pencil tests, etc.
- most frequently used type of measure

Advantages:
- versatile, low in set-up cost and subsequent cost-per-case
- low "dross rates" (little information gets discarded)

Disadvantages:
- potentially reactive
 - the participants are aware their behaviour is being done for the researcher's purposes which may influence how they respond
 - may try to make a good impression
 - give socially desirable answers
 - help the researchers get the answers they are looking for (or hinder)
 - may do this consciously or unconsciously
- as a result, they don’t tend to be very useful forms of evidence

Observations

- watching or recording a participants behaviour

Advantages:
- versatile
- data recorded can be very "rich"

Disadvantages:
- also potentially reactive
 - the participants are aware their behaviour is being observed which may influence their behaviour
- observer error
- used only on overt behaviour, not on thoughts, feelings or expectations
- costly in time and resources and a high dross rate
- use of hidden observers raises ethical concerns
Trace measures

- physical evidences of behaviour left behind as unintended residue of past behaviour
- Advantages:
 - unobtrusive and therefore not reactive
- Disadvantages:
 - not versatile, not available for many types of data we would like to study
 - difficult to pinpoint the exact cause of the evidence
 - time consuming to gather and process
 - costly and high dross rates
- while this is a potentially strong method, is has been used very little in the social and behavioral sciences

Archival records

- census data, court proceedings, diaries, material from newspapers, magazines, radio, and TV, administrative documents, contracts, etc.
- Advantages:
 - lower cost
 - may be the only way to gain evidence on “past” behaviours or for very large social units
- Disadvantages:
 - reactive (public behaviour)
 - versatility, high doss rates
 - only a loose linkage between the record and the concept represented by it
 - no opportunity to “cross-validate” your findings
Techniques for manipulating variables

• Selection
 – make sure all cases of a condition are alike on a certain variable
 • all six-year olds; all male or female
 – advantage:
 • convenient
 – disadvantage:
 • not a “true experiment”
 • can’t determine why the groups are different, just that the difference may cause an effect

Techniques for manipulating variables (2)

• Manipulation of variables of the system
 – manipulate a given variable and randomly assign participants to each condition
 – advantage:
 • not likely to be costly or time consuming
 • have low dissonance rates
 – disadvantage:
 • applicable for only overt and tangible variables
 • unintended experimental demands (hints as to what the researcher really wants)
 – Hawthorne effect
Techniques for manipulating variables (3)

- **Induction**
 - manipulation by less direct interventions
 - #1 misleading instructions to the participant
 - #2 use of false feedback
 - #3 use of experimental confederates
 - advantage:
 - if done correctly, can minimize reactive behaviour
 - disadvantage:
 - involve deception -- raises ethical issues
 - can backfire if the participant figures out the deception

Observational techniques

- **Thinking aloud protocol**
 - ask the participant to vocalize his/her thoughts, feelings, and opinions while interacting with the product
- **Co-discovery method**
 - have two participants perform the task together
- **Question-asking protocol**
 - prompt the user to vocalize his/her thoughts, feeling and opinions by asking direct questions about the product
- **Performance measurement**
 - usability test designed to determine hard, quantitative data
 - quantitative data is gathered
Protocol analysis

- field notes (paper and pencil)
 - cheap, flexible
 - hard to get detailed information
 - researcher must be present, obtrusive
- audio recordings
 - can be unobtrusive
 - useful when the user is thinking aloud
 - difficult to record other related information to synchronize later
 - time consuming analysis

Protocol analysis (2)

- video recordings
 - can be unobtrusive
 - can see everything within the camera range
 - limited as to what the camera can look at
 - different perspective than actually being there
 - time consuming analysis
- computer logging
 - cheap, easy, unobtrusive
 - good for longitudinal studies
 - difficult with off-the-shelf software
 - can only give the system perspective (doesn’t know what else is going on in the environment)
 - large amount of data
Protocol analysis (3)

- user notebooks
 - can gather unusual or infrequent feedback
 - useful for longitudinal studies
 - less detail (at a course level)
 - “interpreted” records