Ubiquitous Computing

“We are trying to conceive a new way of thinking about computers, one that takes into account the human world and allows the computers themselves to vanish into the background”
--Mark Weiser

- Tivoli: An electronic whiteboard application designed to support informal workgroup meetings.

- At the time, most of the early attempts to build computer support for meeting rooms used large whiteboard sized displays. However, these displays were controlled with a keyboard and a mouse.

- Informal workgroup meetings are collaborative in nature. Previous research has shown that the physical actions around a shared drawing surface tend to be as important as the actual marks made on the surface itself.
Goals of the Tivoli Project

- To discover and explore the user interface techniques appropriate to this new kind of technology.

- To discover and implement the functionality needed to actually support small working meetings at the Liveboard.

Nature of the User Interface

- It simulated a whiteboard by allowing freehand drawing and erasing.
- In order to be successful:
 - User interaction with the board should be unselfconscious
 - The interaction should be fluid

- The Liveboard fits in with the authors’ vision of ubiquitous computing as it appears to be a familiar whiteboard.
 - It should initially behave like a normal whiteboard so that first time users can use it immediately.
Functionality for Small Working Meetings

• Small working meetings
 – The participants work closely together on a problem or idea.
 – The working group is usually less than 8 people.
 – There is no facilitator or scribe, so all participants can have access to the board.

• Core functionality:

 • Thrusts
 – remote collaboration
 – Meeting management tools
 – Integration with other ubiquitous devices

Design Features and Issues

• Pen vs. Mouse
 – Gestural techniques are more natural for a pen than for a mouse.
 – A pen is a direct-control device, and a mouse is an indirect-control pointing device.
 – A cursor may not be needed with a pen input device.

• Very Large Interactive Surface
 – Adjust the size and placement of pop-up messages to make sure that the user always notices them.
 – Also, the tools such as buttons and menus have potential to be physically out of the user’s reach.
Design Features and Issues (Continued)

• Multiple Users and Pens
 – The Liveboard is designed to have 3 pens to accommodate multiple users
 – Gestural actions can be localized to specific pens and do not have to rely on shared on-screen tools.
 – Pen state vs. system state
 • Undo is restricted to actions performed with a specific pen.
 • Erase can be applied to strokes performed with any pen.

• Atomic Objects
 – Drawings are represented as stroke objects.
 – As the eraser goes over each stroke, the whole stroke disappears.

Design Features and Issues (Continued)

• Generalized Wiping
 – The wiping motion dynamically selects objects as the wiper passes over them.
 – Erasing is performed by wiping over the surface with the pen in erase mode.

• Gestures
 – A gesture is a stroke that is not taken to be an element of the drawing, but it is interpreted as a command.
 – The most common gesture is the selection gesture, and subsequent gestures then operate on the selection.
Design Features and Issues (Continued)

• Gestures (Continued)
 – Design issue: How do you indicate that a stroke is a gesture?

Status and Future Directions

• Multi-Site Tivoli
 – “Our vision is to make Tivoli a true collaborative tool, supporting both multiple users standing shoulder-to-shoulder around a single Liveboard and multiple users utilizing two or more geographically-separated Liveboards.”

• The Casual User
 – The feedback suggests that the current design favors increased functionality over intuitiveness.

• Support for Specific Meeting Practices
 – Tivoli is often used during brainstorming meetings. Can Tivoli be expanded to support activities such as list-making, categorization, and voting without altering its fundamental white-board-like nature?
Speech Synthesis

- Synthetic text-to-speech technology is efficient and more general than the computer playback of a recorded human voice.
 - It is generally more expensive to splice together recordings of a real human voice. However, a company may choose to use recordings if high-quality natural sounding speech is wanted.
 - A sentence written in ASCII is more compact than a recorded sentence.
 - A system that uses text-to-speech conversion is more flexible than one made up of prerecorded messages.

“Text-To-Speech Conversion Technology” by Michael H. O’Malley

- Text-to-Speech conversion transforms linguistic information stored as data or text into speech

- Applications
 - It is very useful in audio reading devices for blind people.
 - It can also be used to convert electronic mail to voice mail for access by phone.
 - It can permit access to large text databases (like parts inventories) by phone.
Text-To-Speech Conversion Technology

- Two major elements
 - A module with text as the input and with an output that drives the sound-generating mechanism
 - The sound-generating mechanism

- Difficulties
 - The vocal tract is incredibly complex.
 - The current models are able to produce intelligible speech. However, they cannot produce speech that is indistinguishable from human speech.
 - Models that are based on the physical shape and the physiology of the sound production mechanism are difficult to use.

Text Normalization

- Almost all texts contain some sort of symbolic material such as numbers, abbreviations, acronyms, and information signaled by graphic layout.
- The symbolic information needs to be converted into a standard text format.
Word Pronunciation

- “English has by far the most complex relationship between spelling and word pronunciation of any alphabetic language.”
- A dictionary needs to be combined with a sophisticated set of pronunciation rules.
 - A dictionary is needed to handle exceptions. However, a large dictionary is not enough on its own.
 - An accurate text-to-speech conversion system needs to be programmed with several thousand rules in order to handle English.

Prosodies

- Prosodic component of speech: rhythm, intonation, and the emphasis or de-emphasis of particular words.
 - There may be many valid prosodic interpretations. However, there are also many that would not be considered natural.
 - Often emphasized words carry the information focus of the message
 - Word stress patterns may indicate that a word is a part of a multiword compound
 - Conversations usually have an elaborate prosodic component, while speech read from a text generally provides more regular prosodic information.
 - Prosodies prove to be the most difficult part of language for a text-to-speech conversion system.
Phonetic Rules

- Phonemes are the symbols used in dictionaries which represent word pronunciation.
- The phonemes are the inputs of the phonetic rule module, and the output is a detailed description of the sounds of the utterance.
 - In this module, the duration of each phoneme is assigned according to the context of the text.
 - Other rules might remove parts of phonemes.

Voice Tables

- The voice table module converts the detailed phonetic description of an utterance into numeric targets for use by the voice model.
- The voice tables handle differences in bandwidth.
 - Speech researchers usually assume a minimum speech bandwidth of about 5-6 kHz
 - Telephone system designers traditionally use a bandwidth of 3.5 kHz
- Therefore, the author suggests using different sets of voice tables for different frequency ranges.
- High-quality text-to-speech systems usually score around 95% for voice intelligibility.
- Low-quality text-to-speech systems usually score around 60-75%.
Development Tools

- Development tools are “tools that provide programming support for implementing interactive systems.”
- The toolkit should minimize the effort that it takes to translate the interface design to the format necessary for the toolkit.
- A tool should be integrated into the interface development process.
- An alternate definition:
 - “tools that help a developer convert interface specifications into an interactive system, and that support all phases of system refinement including prototyping, implementation, testing, maintenance, and system enhancement.”

“GROUPKIT: A Groupware Toolkit for Building Real-Time Conferencing Applications” by Mark Roseman and Saul Greenberg

- Conventional toolkits are often inadequate for groupware.
- GROUPKIT is a groupware toolkit for real-time distributed work.
- GROUPKIT assists in constructing real-time work surfaces.
 - A work surface is a shared visual environment where one user’s actions are made immediately visible to other users.

- Toolkit Design Requirements
 - Human-centered design requirements
 - Programmer-centered design requirements
Human-centered design requirements

• Supporting multi-user actions over a visual work surface
 – Provide support for gesturing

 – Provide support for graphical annotation

• Structuring group processes during a meeting
 – Provide various floor control policies
 • Floor control policies provide a way to mediate access to shared work items.

 – Support different registration methods

 – Support latecomers into the conference
Human-centered design requirements

- Integration with conventional ways of doing work
 - Integrate other forms of communication

 - Allow use of single-user applications
 - Groupware should not create a barrier between “individual” and “group” ways of doing work.

Programmer-centered design requirements

- Technical support of multiple and distributed processes
 - Provide processes for basic conference management

 - Provide a robust communications infrastructure

 - Provide support for persistent sessions
Programmer-centered design requirements

- Technical support of a graphics model
 - Provide primitives to a shared graphics library
 - Provide object concurrency control
 - Separate the view of an object from its underlying representation

Wednesday, July 28th

- Assignment 4 Parts I & II due at the first break of class.

- Readings
 - Article 22: Integration of Inter-Personal Space and Shared Workspace: ClearBoard Design and Experiments by Hiroshi Ishii, Minoru Kobayashi and Jonathan Grudin
 - Agents that Reduce Work and Information Overload by Pattie Maes