Chapter 3
Attribute Grammars

Meaning
What is the semantics or meaning of the expression: \(2 + 3\)
- Its value: 5
- Its type (type checker): int
- A string (infix-to-postfix translator): + 2 3
The semantics of a construct can be any quantity or set of quantities associated with the construct.

Attribute Grammars
- Formalism for specifying semantics based on context-free grammars (BNF).
- Used to solve some typical problems:
 - Type checking and type inference
 - Compatibility between procedure definition and call.
- Associate attributes with terminals and nonterminals.
- Associate semantic functions with productions.
 - Used to compute attribute values.

Attributes
- A quantity associated with a construct.
 - \(X.a\) for attribute \(a\) of \(X\) (\(X\) is either a nonterminal or a terminal).
- Attributes have values:
 - Each occurrence of an attribute of an attribute in a parse tree has a value.
- Grammar symbols can have any number of attributes.

Example: Evaluating arithmetic expressions

\[
\begin{align*}
\text{<exp>} & ::= \text{<exp>} + \text{<term>} \\
\text{<exp>} & ::= \text{<exp>} - \text{<term>} \\
\text{<exp>} & ::= \text{<term>} \\
\text{<term>} & ::= \text{<term>} * \text{<factor>} \\
\text{<term>} & ::= \text{<term>} \div \text{<factor>} \\
\text{<factor>} & ::= (\text{<exp>}) \\
\text{<factor>} & ::= \text{num}
\end{align*}
\]

Example: \(7*5\)

\[
\begin{align*}
\text{val} & \text{ is the value of the digit} \\
\text{<exp>.val} & = 35 \\
\text{<term>.val} & = 7 \\
\text{<factor>.val} & = 5 \\
\text{<num>.val} & = 7
\end{align*}
\]
Chapter 3: Semantics

Attributes

- Syntax symbols can return values (sort of output parameters)
 - Digits can return its numeric value
 - digit <val>
 - Nonterminal symbols can have also input attributes.
 - Parameters that are passed from the “calling” production.
 - number <base, val>
 - base: number base (e.g. 10 or 2 or 16)
 - val: returned value of the number

Information Flow

- inherited
- synthesized
- computed
- available

Synthesized Attributes

- The values is computed from the values of attributes of the children.
- Pass information up the parse tree (bottom-up propagation).
- S-attribute grammar uses only synthesized attributes
- Example:
 - Value of expressions
 - Types of expressions

Inherited Attributes

- The values is computed from the values of attributes of the siblings and parent.
- Pass information down the parse tree (top-down propagation) or from left siblings to the right siblings
- Example:
 - Type information
 - Where does a variable occur? LHS or RHS

Example 1

- Translating decimal numbers between 0 and 99 into their English phrases.
 - number phrase
 - 0 zero
 - 10 ten
 - 19 nineteen
 - 20 twenty
 - 31 thirty one

- Translations are based on each digit
 - 31: thirty, the translation of 3 on the left, and one, the translation of 1 on the right.
- Exceptions:
 - 30 is thirty, not thirty zero
 - 19 is nineteen, not ten nine

Example 1: Syntax

```plaintext
<number> ::= <digit>
<number> ::= <digit> <set_digit>
<set_digit> ::= <digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9
```
Chapter 3: Semantics

Attribute Occurrences
- Same attribute can be associated with different symbols appearing in the same grammar rule.
- Attribute occurrence of a rule p is an ordered pair of attributes and natural number \(<a,j>\) representing the attribute a at position j in production p.
- Two disjoint subsets:
 - Defined occurrences for a production:
 - The information flowing into a node of the parse tree.
 - Used occurrences for a production:
 - The information flowing out a node of the parse tree.

Used Attribute Occurrences

<table>
<thead>
<tr>
<th>Rule: S? AB</th>
<th>S</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syn(S)</td>
<td>Syn(A)</td>
<td>Syn(B)</td>
</tr>
<tr>
<td></td>
<td>In(S)</td>
<td>In(A)</td>
<td>In(B)</td>
</tr>
</tbody>
</table>
- Set of inherited attributes of all the grammar symbols on the LHS plus the set of synthesized attributes of the RHS.

Defined Attribute Occurrences

<table>
<thead>
<tr>
<th>Rule: S? AB</th>
<th>S</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syn(S)</td>
<td>Syn(A)</td>
<td>Syn(B)</td>
</tr>
<tr>
<td></td>
<td>In(S)</td>
<td>In(A)</td>
<td>In(B)</td>
</tr>
</tbody>
</table>
- Set of synthesized attributes of all the grammar symbols on the LHS plus the set of inherited attributes of the RHS.

Semantic Function
- Define a semantic function for every defined occurrence in terms of the values of used occurrences.

Example 1: Semantics

\(<N> ::= <D>\)
N.trans := spell(D.val)

\(<N> ::= <D> <S>\)
S.in := D.val
N.trans := S.trans

\(<S> ::= <D>\)
S.val = if D.val = 0 then decade(S.in)
 else if S.in <= 1 then spell(10*S.in + D.val)
 else decade(S.in) || spell(D.val)

\(<D> ::= 0\)
<D>.val := 0...

\(<D> ::= 9\)
<D>.val := 9

Functions spell and decade:
spell(1) = one, spell(2) = two, ..., spell(19) = nineteen
decade(0) = zero, decade(1) = ten, ..., decade(9) = ninety

Example 2: Syntax

Decimal value of a binary number

\(<\text{binary}> ::= <\text{digit}>\)
\(<\text{binary}> ::= <\text{digit}> <\text{binary}>\)

\(<\text{digit}> ::= 0\)
\(<\text{digit}> ::= 1\)

\(::= <D>\)
\(::= <D> \)

\(<D> ::= 0\)
\(<D> ::= 1\)
Chapter 3: Semantics

Example 2: Semantics

\[
\begin{align*}
\text{Example 2: Semantics} & & \text{Example 2: Sample Parse Tree} \\
\langle B \rangle & ::= \langle D \rangle \\
& \quad \text{B.pos} := 1 \\
& \quad \text{B.val} := \text{D.val} \\
& \quad \text{D.pow} := 0 \\
\langle B_1 \rangle & ::= \langle D \rangle \langle B \rangle \\
& \quad \text{B}_1.\text{pos} := \text{B}.\text{pos} + 1 \\
& \quad \text{B}_1.\text{val} := \text{B}.\text{val} + \text{D}.\text{val} \\
& \quad \text{D.pow} := \text{B}_2.\text{pos} \\
\langle D \rangle & ::= 0 \\
& \quad \text{D.val} := 0 \\
\langle D \rangle & ::= 1 \\
& \quad \text{D.val} := \text{2}^\text{D.pow} \\
\end{align*}
\]

Example 3: Syntax

Simple Assignment Statements

\[
\begin{align*}
\text{Example 3: Syntax} & & \text{Example 3: Semantics} \\
\langle \text{assign} \rangle & ::= \langle \text{var} \rangle = \langle \text{expr} \rangle \\
\langle \text{expr} \rangle & ::= \langle \text{var} \rangle + \langle \text{var} \rangle \\
\langle \text{expr} \rangle & ::= \langle \text{var} \rangle \\
\langle \text{var} \rangle & ::= \text{X} | \text{Y} | \text{Z} \\
\langle \text{A} \rangle & ::= \langle \text{V} \rangle = \langle \text{E} \rangle \\
\langle \text{E} \rangle & ::= \langle \text{V} \rangle + \langle \text{V} \rangle \\
\langle \text{E} \rangle & ::= \langle \text{V} \rangle \\
\langle \text{V} \rangle & ::= \text{X} | \text{Y} | \text{Z} \\
\end{align*}
\]

Attribute Grammars: Summary

An attribute grammar is a context-free grammar with two disjoint sets of attributes (inherited and synthesized) and semantic functions for all defined attribute occurrences.

Attribute Grammar: Process

1. EBNF
2. Attributes
 - Identify the parameters of the syntax symbols.
 - Output attributes (synthesized) yield results.
 - Input attributes (inherited) provide context.
3. Semantic functions
Chapter 3

Operational Semantics

Semantics of a programming language is the definition of the meaning of any program that is syntactically valid.

Intuitive idea of programming meaning: “whatever happens in a (real or model) computer when the program is executed.”

A precise characterization of this idea is called operational semantics.

Operational Semantics: advantages and disadvantages

Advantage of representing program meaning directly in the code of a real (or simulated) machine.

Potential weakness, since the definition of semantics is confined to a particular architecture (either real or abstract).

Virtual machine also needs a semantic description, which adds complexity and can lead to circular definitions.

Operational Semantics

Provides a definition of program meaning by simulating the program’s behavior on a machine model that has a very simple (through not necessarily realistic) instruction set and memory organization.

Definition of the virtual computer can be described using an existing programming language or a virtual computer (idealized computer).

Change in the state of the machine (memory, registers, etc) defines the meaning of the statement.

Example

Pascal statement

for i := x to y do
begin
...
end

Operational Semantics

i := x
loop: if i > y goto out
...
i := i + 1
goto loop

Pascal statement

for i := x to y do
begin
...
end

Operational Semantics

i := x
loop: if i > y goto out
...
i := i + 1
goto loop

The process:

Identify a virtual machine (an idealized computer).

Build a translator (translates source code to the machine code of an idealized computer).

Build a simulator for the idealized computer.

Operational semantics is sometimes called transformational semantics, if an existing programming language is used in place of the virtual machine.
Chapter 3: Semantics

Notation

- State of a program σ:
 - A set of pairs $<v, val>$ that represent all active variables and their current assigned values at some stage during the program’s execution.
 - $\sigma = \{ <x, 1>, <y, 2>, <z, 3> \}$
 - After $y = 2 \times z + 3$
 - $\sigma = \{ <x, 1>, <y, 9>, <z, 3> \}$
 - After $w = 4$
 - $\sigma = \{ <x, 1>, <y, 9>, <z, 3>, <w, 4> \}$

- State transformation of these type of assignments can be represented by a function called \textit{overriding union} U
 - $\sigma_1 = \{ <x, 1>, <y, 2>, <z, 3> \}$
 - $\sigma_2 = \{ <y, 9>, <w, 4> \}$
 - $\sigma_1 U \sigma_2 = \{ <x, 1>, <y, 9>, <z, 3>, <w, 4> \}$

Execution rule:

- "If the \textit{premise} is true, then the \textit{conclusion} is true".

Examples

- Addition of two expressions
 - $\alpha (e_1) \Rightarrow v_1$$\alpha (e_2) \Rightarrow v_2$
 - $\alpha (e_1 + e_2) \Rightarrow v_1 + v_2$

- Assignment statement ($s.target = s.source$)
 - $\alpha (s) \Rightarrow \alpha U \{ <s.target, v> \}$
 - Suppose: assignment $x = x + 1$, current state $x = 5$
 - $\alpha (x) \Rightarrow 5$
 - $\alpha (1) \Rightarrow 1$
 - $\alpha (x + 1) \Rightarrow 6$
 - $\alpha (x = x + 1) \Rightarrow \{ ..., <5, v>, ... \} U \{ <v, 6> \}$

- Loops ($s = \text{while} (s.test) s.body$)
 - $\alpha (s.test) \Rightarrow \text{true}$
 - $\alpha (s.body) \Rightarrow \sigma$
 - $\alpha (\text{while} (s.test) s.body) \Rightarrow \sigma$
 - $\alpha (s) \Rightarrow \{ ..., <5, v>, ... \} U \{ <v, 6> \}$

Evaluation

- Advantages:
 - May be simple, intuitive for small examples.
 - Good if used informally.
 - Useful for implementation.

- Disadvantages:
 - Very complex for large programs.
 - Depends on programming languages of lower levels (not mathematics).

- Uses:
 - Vienna Definition Language (VDL) used to define PL/I (Wegner, 1972).
 - Compiler work
Chapter 3
Axiomatic Semantics

Another way to view programming meaning is to start with a formal specification of what a program is supposed to do, and then rigorously prove that the program does that by using a systematic series of logical steps.
- This approach evokes the idea of axiomatic semantics.

Axiomatic Semantics

- Programmers: confirm or prove that a program does what it is supposed to do under all circumstances
- Axiomatic semantics provides a vehicle for developing proofs that a program is "correct".

Example: prove mathematically that the C/C++ function *Max* actually computes as its result the maximum of its two parameter: *a* and *b*.
- Calling this function one time will obtain an answer for a particular *a* and *b*, such as 8 and 13. But the parameters *a* and *b* define a wide range of integers, so calling it several times with all the different values to prove its correctness would be an infeasible task.

Assertions

- The logical expressions used in axiomatic semantics are called assertions.
- **Precondition**: an assertion immediately preceding a statement that describes the constraints on the program variables at that point.
- **Postcondition**: an assertion immediately following a statement that describes the new constraints on some variables after the execution of the statement.
Weakest Precondition

- It is the least restrictive precondition that will guarantee the validity of the associated postcondition.
- Correctness proof of a program can be constructed if the weakest condition can be computed from the given postcondition.
- Construct preconditions in reverse:
 - From the postcondition of the last statement of the program generate the precondition of the previous statement.
 - This precondition is the postcondition of the previous statement, and so on.

Assignment Statements

- Let \(x = E \) be a general assignment statement and \(Q \) its postconditions.
 - Precondition: \(P = Q \) \(x \) replaced by \(E \)
 - Example:
 \[
 a = \frac{b}{2}-1 \quad \{a < 10\}
 \]
 Weakest precondition: substitute \(\frac{b}{2}-1 \) in the postcondition \(\{a < 10\} \)
 \[
 b/2-1 < 10
 \]
 \[
 b < 22
 \]

Assignment Statements: examples

- General notation of a statement: \(\{P\} S \{Q\} \)
- More examples:
 - \(x = 4y + 5 \quad \{x > 13\} \)
 - \(x = y - 3 \times 6 \quad \{x > -5\} \)
 - \(x = 2y + 3x \quad \{x > 10\} \)

Assignment Statements

- An assignment with a precondition and a postcondition is a theorem.
 - If the assignment axiom, when applied to the postcondition and the assignment statement, produces the given precondition, the theorem is proved.
 - Example:
 \[
 \{x > 5\} \quad x = x - 3 \quad \{x > 0\}
 \]
 Using the assignment axiom on
 \[
 x = x - 3 \quad \{x > 0\}
 \]
 \[
 \{x > 3\}
 \]
 \[
 \{x > 5\} \quad \text{implies} \quad \{x > 3\}
 \]

Sequences

- The weakest precondition for a sequence cannot be described by an axiom (only with an inference rule)
 - It depends on the particular kinds of statements in the sequence.
 - Inference rule:
 - The precondition of the second statement is computed.
 - This is used as the postcondition of the first statement.
 - The precondition of the first element is the precondition of the whole sequence.
Chapter 3: Semantics

Sequences: examples

- Example:
 \[y = 3x + 1; \]
 \[x = y + 3; \]
 \(\{ x < 10 \} \)
 \(y < 7 \)
 Used as postcondition of the first statement
 \(3x + 1 < 7 \)
 \(x < 2 \)

- Other example:
 \[a = 3(2b+a); \]
 \[b = 2a - 1 \]
 \(\{ b > 5 \} \)

Selection

- Inference rule:
 - Selection statement must be proven for both when the Boolean control expression is true and when it is false.
 - The obtained precondition should be used in the precondition of both the then and the else clauses.

Selection: example

- Example:
 \[\text{if } (x > 0) \]
 \[y = y - 1 \]
 \[\text{else } y = y + 1 \]
 \(\{ y > 0 \} \)
 \[\text{Axiom for assignment on the "then" clause} \]
 \[y = y - 1 \{ y > 0 \} \]
 \[y - 1 > 0 \]
 \[y > 1 \]
 \[\text{Same axiom to the "else" clause} \]
 \[y = y + 1 \{ y > 0 \} \]
 \[y + 1 > 0 \]
 \[y > -1 \]
 \[\text{But } \{ y > 1 \} \Rightarrow \{ y > -1 \} \]
 \[\text{Precondition of the whole statement: } \{ y > 1 \} \]

Evaluation

- Advantages:
 - Can be very abstract.
 - May be useful in program correctness proofs.
 - Solid theoretical foundations.
- Disadvantages:
 - Predicate transformers are hard to define.
 - Hard to give complete meaning.
 - Does not suggest implementation.
- Uses:
 - Semantics of Pascal.
 - Reasoning about correctness.

Dynamic Semantics

A third way to view the semantics of a programming language is to define the meaning of each type of statement that occurs in the (abstract) syntax as a state-transforming mathematical function.

- The meaning of a program can be expressed as a collection of functions operating on the program state.
- This approach is called denotational semantics.
Chapter 3: Semantics

Denotational Semantics
- Most rigorous, abstract, and widely known method.
- Based on recursive function theory.
- Originally developed by Scott and Strachey (1970).
- Key idea: define a function that maps a program (a syntactic object) to its meaning (a semantic object).
 - It is difficult to create the objects and mapping functions.

Denotational vs. Operational
- Denotational semantics is similar to high-level operational semantics, except:
 - Machine is gone.
 - Language is mathematics (lambda calculus).
- Differences:
 - In operational semantics, the state changes are defined by coded algorithms for a virtual machine.
 - In denotational semantics, they are defined by rigorous mathematical functions.

Denotational Semantics: evaluation
- Advantages:
 - Compact and precise, with solid mathematical foundation.
 - Provides a rigorous way to think about programs.
 - Can be used to prove the correctness of programs.
 - Can be an aid to language design.
- Disadvantages:
 - Requires mathematical sophistication
 - Hard for programmers to use.
- Uses:
 - Semantics for Algol 60
 - Compiler generation and optimization

Summary
- Each form of semantic description has its place:
 - Operational
 - Informal descriptions
 - Compiler work
 - Axiomatic
 - Reasoning about particular properties
 - Proofs of correctness
 - Denotational
 - Formal definitions
 - Probably correct implementations