Description Logics: ALC
Outline

Topics:
1. Introduction to description logics
2. The description logic \mathcal{ALC}
3. Extensions to \mathcal{ALC}
4. A tableau algorithm for \mathcal{ALC}
Description logics

- A DL is a formalism for expressing concepts, their attributes (or associated roles), and the relationships between them.
 - E.g. Person could be a concept and a role could be ParentOf.
- Can be regarded as a KR system based on a structured representation of knowledge.
- Most DLs are fragments of FOL, written in a distinct syntax.

Predecessors of DLs

- Semantic networks of the 70s
- Frame-based systems
Why Description Logics?

Ideal AI case:

- Approaches have scientific (logical) and engineering aspects
- **Scientific**: Analyse the problem formally and in detail
- **Engineering**: Get something working quickly and efficiently
- Success:

 When these two approaches coincide – efficient implementations of (formally) well-understood systems.

- Description Logic research has (arguably) reached this point
Background: Concepts, Roles, Constants

- In a description logic, there are sentences that will be true or false (as in FOL).
 - These are restricted to *subsumption* and *instance* assertions.
- In addition, there are three sorts of expressions that act like nouns and noun phrases in English:
 - *Concepts* are like category nouns: Person, Female, GraduateStudent
 - *Roles* are like relational nouns: AgeOf, ParentOf, AreaOfStudy
 - Specify attributes of concepts and their types
 - *Constants* are like proper nouns: John, Mary
- These correspond to unary predicates, binary predicates and constants (respectively) in FOL.
- Unlike in FOL, concepts need not be atomic and can have structure.
DL Knowledge Bases

An KB in a DL contains two parts:

- Define terminology: \(TBox \)
 - E.g. \(MWD \vdash Mother \sqcap \forall ParentOf . \neg Female \)

- Give assertions: \(ABox \)
 - E.g. \(MWD(sue) \).
DL Knowledge Bases: TBox

Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*

- **Roles**: binary relations between individuals
 - E.g. $\forall \text{ParentOf} \neg \text{Female}$

- **Complex concepts using constructors**
 - E.g. $\text{Mother} \sqcap \forall \text{ParentOf} \neg \text{Female}$

- **Assertions concerning complex concepts**
 - E.g. $\text{MWD} = \text{Mother} \sqcap \forall \text{ParentOf} \neg \text{Female}$
 - $\text{Mother} \sqsubseteq \text{Female}$
DL Knowledge Bases: TBox

Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*

- **Roles**: binary relations between individuals
 - E.g. $\forall \text{ParentOf} . \neg \text{Female}$

Complex concepts using constructors

- E.g. $\text{Mother} \sqcap \forall \text{ParentOf} . \neg \text{Female}$

Assertions concerning complex concepts

- E.g. $\text{MWD} = \text{Mother} \sqcap \forall \text{ParentOf} . \neg \text{Female}$
DL Knowledge Bases: TBox

Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*
- **Roles**: binary relations between individuals
 - E.g. $\forall ParentOf . \neg Female$
- **Complex concepts** using constructors
 - E.g. $Mother \sqcap \forall ParentOf . \neg Female$
DL Knowledge Bases: TBox

Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*
- **Roles**: binary relations between individuals
 - E.g. $\forall \text{ParentOf} . \neg \text{Female}$
- **Complex concepts** using constructors
 - E.g. $\text{Mother} \sqcap \forall \text{ParentOf} . \neg \text{Female}$
- ** Assertions** concerning complex concepts
 - E.g. $\text{MWD} \models \text{Mother} \sqcap \forall \text{ParentOf} . \neg \text{Female}$
 - $\text{Mother} \sqsubseteq \text{Female}$
DL Knowledge Bases: ABox

ABox: Assertions that individuals satisfy certain concepts and roles.

- Think of as a (very) simple relational database.
- E.g. $MWD(Mary)$, $ParentOf(Mary, John)$.
DL: Advantages

- Well-defined formal semantics.
- Known (and often good) complexity characteristics or implementations.
- Relatively easy to specify DL knowledge bases, in a structured hierarchical fashion.
- DLs constitute a *large* family of approaches.
 - Can tailor a language to a specific application.
Applications

Useful whenever a common vocabulary is important.

E.g.:

- Enhanced database systems
 - DL-Lite
- Medical informatics: SnoMed, Galen
 - EL
- Semantic Web
 - Next generation web
 - OWL: W3C recommendation.

We’ll look at perhaps the most central DL, \mathcal{ALC}.
The Logic \mathcal{ALC}

An \mathcal{ALC} KB contains two parts:

- Define terminology: TBox
- Give assertions: ABox

Main components of the TBox:
- Concepts: Represent classes of individuals
- Roles: Represent binary relations between individuals
- Complex concepts using constructors

Examples:
- Concept names: Person, Female
- Role names: ParentOf, HasHusband
- Individual names (in the ABox): John, Mary
The Logic \mathcal{ALC}

An \mathcal{ALC} KB contains two parts:

- Define terminology: TBox
- Give assertions: ABox

Main components of the TBox:

- Concepts: Represent classes of individuals
- Roles: Represent binary relations between individuals
- Complex concepts using constructors

Examples:

- Concept names: Person, Female
- Role names: ParentOf, HasHusband
- Individual names (in the ABox): John, Mary
The Logic \mathcal{ALC}: Language

Logical symbols:

- Propositional constructors: \Box, \Diamond, \neg
- Other restrictions: \forall, \exists
- \top, \bot
The Logic \mathcal{ALC}: Language

Logical symbols:
- Propositional constructors: \sqcap, \sqcup, \neg
- Other restrictions: \forall, \exists
- \top, \bot

Nonlogical symbols:
- Concept names
- Role names
The Logic \mathcal{ALC}: Language

Logical symbols:
- Propositional constructors: \sqcap, \sqcup, \neg
- Other restrictions: \forall, \exists
- \top, \bot

Nonlogical symbols:
- Concept names
- Role names

Concept construction
- Let C and D be concepts and R a role.
- $\neg C$, $C \sqcap D$, $C \sqcup D$ are concepts.
- $\forall R. C$, $\exists R. C$ are concepts.
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.
- C stands for a concept or set of individuals.
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
- E.g. Female \sqcap Human
- $C \sqcup D$ is the concept of things that are either C or D or both.
- E.g. Male \sqcup Female
- $\forall R \cdot C$ is the concept of things such that all things that are R related to it are C's.
- E.g. \forallParentOf.Female: things all of whose children are female
- $\exists R \cdot C$ is the concept of things such that some thing R related to it is a C.
- \existsParentOf.Female: things with a female child
The Logic \textit{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. \textit{Female} \sqcap \textit{Human}
- $C \sqcup D$ is the concept of things that are either C or D or both.
- $\forall R \cdot C$ is the concept of things such that all things that are R related to it are C's.
 - E.g. $\forall \text{ParentOf} \cdot \text{Female}$: things all of whose children are female
- $\exists R \cdot C$ is the concept of things such that some thing R related to it is a C.
 - $\exists \text{ParentOf} \cdot \text{Female}$: things with a female child
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. $Female \sqcap Human$
- $C \sqcup D$ is the concept of things that are either C or D or both.
 - E.g. $Male \sqcup Female$
Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. $Female \sqcap Human$
- $C \sqcup D$ is the concept of things that are either C or D or both.
 - E.g. $Male \sqcup Female$
- $\forall R. C$ is the concept of things such that all things that are R related to it are C’s.
 - E.g. $\forall ParentOf . Female$: things all of whose children are female
The Logic \(\mathcal{ALC} \): Language

Let \(C \) and \(D \) be concepts and \(R \) a role.

- \(C \) stands for a concept or set of individuals.
- \(\lnot C \) stands for the concept of things that are not a \(C \).
- \(C \sqcap D \) is the concept of things that are both \(C \) and \(D \).
 - E.g. \(\text{Female} \sqcap \text{Human} \)
- \(C \sqcup D \) is the concept of things that are either \(C \) or \(D \) or both.
 - E.g. \(\text{Male} \sqcup \text{Female} \)
- \(\forall R.C \) is the concept of things such that all things that are \(R \) related to it are \(C \)’s.
 - E.g. \(\forall \text{ParentOf} . \text{Female} \): things all of whose children are female
- \(\exists R.C \) is the concept of things such that some thing \(R \) related to it is a \(C \).
 - \(\exists \text{ParentOf} . \text{Female} \): things with a female child
The Logic \mathcal{ALC}: Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \equiv D$ where C and D are concepts
The Logic \mathcal{ALC}: Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \equiv D$ where C and D are concepts

Assertions in the ABox:

- $C(a)$ where C is a concept and a is an individual name.
- $R(a, b)$ where R is a role name, a and b are individual names.
The Logic \mathcal{ALC}: Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \equiv D$ where C and D are concepts

Assertions in the ABox:

- $C(a)$ where C is a concept and a is an individual name.
- $R(a, b)$ where R is a role name, a and b are individual names.

DL knowledge base:

- Set of TBox statements
- Set of ABox statements
Examples

TBox:

• $\text{Person} \sqsubseteq \text{Animal} \sqcap \text{Biped}$
• $\text{Woman} \models \text{Person} \sqcap \text{Female}$
• $\text{Mother} \models \text{Woman} \sqcap \exists \text{ParentOf} \cdot \text{Person}$
• $\text{Parent} \models \text{Mother} \sqcup \text{Father}$
• $\text{Man} \models \text{Person} \sqcap \neg \text{Woman}$
• $\text{MotherWithoutDaughter} \models \text{Mother} \sqcap \forall \text{ParentOf} \cdot \neg \text{Female}$
• $\text{GrandMother} \models \text{Woman} \sqcap \exists \text{ParentOf} \cdot \text{Parent}$

ABox:

• $\text{GrandMother}(\text{Sally})$
• $(\text{Person} \sqcap \text{Male})(\text{John})$
Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL.
Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL

An interpretation is a pair $\mathcal{I} = \langle \Delta, .^\mathcal{I} \rangle$

- Domain Δ: non-empty set of objects
- Interpretation function $^\mathcal{I}$: Maps structures into the domain.
- Recall, Brachman and Levesque write this as $\mathcal{I} = \langle D, I \rangle$.
Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL

An interpretation is a pair $\mathcal{I} = \langle \Delta, \mathcal{I} \rangle$

- Domain Δ: non-empty set of objects
- Interpretation function \mathcal{I}: Maps structures into the domain.
- Recall, Brachman and Levesque write this as $\mathcal{I} = \langle D, I \rangle$.

Then:

- \mathcal{I} maps every concept name A to a subset $A^{\mathcal{I}} \subseteq \Delta$
- \mathcal{I} maps every role name R to a binary relation $R^{\mathcal{I}} \subseteq \Delta \times \Delta$
- \mathcal{I} maps individual names a to elements of Δ: $a^{\mathcal{I}} \in \Delta$
- $\top^{\mathcal{I}} = \Delta$ and $\bot^{\mathcal{I}} = \emptyset$.
Semantics for Complex Concepts

Assume C, D are concepts, and R is a role.

- $(\neg C)^I = \Delta \setminus C^I$
- $(C \cap D)^I = C^I \cap D^I$
- $(C \cup D)^I = C^I \cup D^I$
- $(\forall R.C)^I = \{x \mid y \in C^I \text{ for every } y \text{ s.t. } (x, y) \in R^I\}$
- $(\exists R.C)^I = \{x \mid y \in C^I \text{ for some } y \text{ s.t. } (x, y) \in R^I\}$
Semantics for Axioms and Assertions

Assume C, D are concepts, R is a role, a and b are individual names. Let $\mathcal{I} = (\Delta, .^{\mathcal{I}})$ be an interpretation.

- $C \sqsubseteq D$ is true in \mathcal{I} iff $C^\mathcal{I} \subseteq D^\mathcal{I}$
- $C \triangleright D$ is true in \mathcal{I} iff $C^\mathcal{I} = D^\mathcal{I}$
- $C(a)$ is true in \mathcal{I} iff $a^\mathcal{I} \in C^\mathcal{I}$
- $R(a, b)$ is true in \mathcal{I} iff $(a^\mathcal{I}, b^\mathcal{I}) \in R^\mathcal{I}$
Reasoning in **ALC**

- Sentences: Axioms or assertions
- \mathcal{I} is a *model* for a sentence S iff S is true in \mathcal{I}
- \mathcal{I} is a model for a DL knowledge base K iff it is a model for every sentence in K
- Models of K are denoted by $[K]$
- S is *entailed* by K, written $K \models S$ iff $[K] \subseteq [S]$ (i.e. every model of K is a model of S.)
Types of Reasoning in \textit{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a,b)$
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \doteq D$
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \equiv D$
- Consistency checking: $K \not\models \top \sqsubseteq \bot$
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \equiv D$
- Consistency checking: $K \not\models \top \sqsubseteq \bot$
- Concept satisfiability: $K \not\models C \sqsubseteq \bot$

Disjoint concepts: $K \not\models C \sqcap D \sqsubseteq \bot$
Types of Reasoning in \(\mathcal{ALC} \)

\(K \) a DL knowledge base;
\(C \) and \(D \) are concepts;
\(R \) is a role;
\(a \) and \(b \) are individual names

- Instance checking: \(K \models C(a) \) or \(K \models R(a, b) \)
- Subsumption checking: \(K \models C \sqsubseteq D \)
- Equivalence checking: \(K \models C \sqapprox D \)
- Consistency checking: \(K \not\models \top \sqsubseteq \bot \)
- Concept satisfiability: \(K \not\models C \sqsubseteq \bot \)
- Disjoint concepts: \(K \models C \cap D \sqsubseteq \bot \)
Reduction to Consistency Checking

Let b be a new individual

- Instance checking:
 \[K \models C(a) \text{ iff } K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot \]

- Subsumption checking:
 \[K \models C \sqsubseteq D \text{ iff } K \cup \{C \sqcap \neg D\}(b) \models \top \sqsubseteq \bot \]

- Equivalence checking:
 \[K \models C = D \text{ iff } K \cup \{C \sqcap \neg D\}(b), \neg C \sqcap D(b) \models \top \sqsubseteq \bot \]

- Concept satisfiability:
 \[K \not\models C \sqsubseteq \bot \text{ iff } K \cup \{C\}(b) \not\models \top \sqsubseteq \bot \]

- Disjoint concepts:
 \[K \models C \sqcap D \sqsubseteq \bot \text{ iff } K \cup \{C \sqcap D\}(b) \models \top \sqsubseteq \bot \]
Reduction to Consistency Checking

Let b be a new individual

- **Instance checking:**

 $K \models C(a)$ iff $K \cup \{\neg C(a)\} \models T \sqsubseteq \bot$

- **Subsumption checking:**

 $K \models C \sqsubseteq D$ iff $K \cup \{(C \cap \neg D)(b)\} \models T \sqsubseteq \bot$
Reduction to Consistency Checking

Let b be a new individual

- Instance checking:
 $K \models C(a)$ iff $K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot$

- Subsumption checking:
 $K \models C \sqsubseteq D$ iff $K \cup \{(C \sqcap \neg D)(b)\} \models \top \sqsubseteq \bot$

- Equivalence checking:
 $K \models C \equiv D$ iff $K \cup \{(C \sqcap \neg D)(b), (\neg C \sqcap D)(b)\} \models \top \sqsubseteq \bot$

Concept satisfiability:

$K \not\models C \sqsubseteq \bot$ iff $K \cup \{C(b)\} \not\models \top \sqsubseteq \bot$

Disjoint concepts:

$K \models C \sqcap D \sqsubseteq \bot$ iff $K \cup \{(C \sqcap D)(b)\} \models \top \sqsubseteq \bot$
Reduction to Consistency Checking

Let b be a new individual

- **Instance checking:**
 \[K \models C(a) \text{ iff } K \cup \{\neg C(a)\} \models T \sqsubseteq \bot \]

- **Subsumption checking:**
 \[K \models C \sqsubseteq D \text{ iff } K \cup \{(C \sqcap \neg D)(b)\} \models T \sqsubseteq \bot \]

- **Equivalence checking:**
 \[K \models C \equiv D \text{ iff } K \cup \{(C \sqcap \neg D)(b), (\neg C \sqcap D)(b)\} \models T \sqsubseteq \bot \]

- **Concept satisfiability:**
 \[K \not\models C \sqsubseteq \bot \text{ iff } K \cup \{C(b)\} \not\models T \sqsubseteq \bot \]
Reduction to Consistency Checking

Let b be a new individual

- Instance checking:
 $K \models C(a)$ iff $K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot$

- Subsumption checking:
 $K \models C \sqsubseteq D$ iff $K \cup \{(C \cap \neg D)(b)\} \models \top \sqsubseteq \bot$

- Equivalence checking:
 $K \models C \equiv D$ iff $K \cup \{(C \cap \neg D)(b), (\neg C \cap D)(b)\} \models \top \sqsubseteq \bot$

- Concept satisfiability:
 $K \not\models C \sqsubseteq \bot$ iff $K \cup \{C(b)\} \not\models \top \sqsubseteq \bot$

- Disjoint concepts:
 $K \models C \cap D \sqsubseteq \bot$ iff $K \cup \{(C \cap D)(b)\} \models \top \sqsubseteq \bot$
Aside: Extensions to \(\mathcal{ALC} \)

Extended concepts

- Number restrictions: \((\leq nR.C)\) and \((\geq nR.C)\)

Role operators

- Inverse roles: \(R^-\) where \(R\) is a role

Role axioms

- Role hierarchy: \(R \sqsubseteq S\) where \(R\) and \(S\) are roles

 So far have just used \(\sqsubseteq\) for concepts.

- Transitive roles: \(R \in R^+\) where \(R\) is a role
Extensions to \(ALC \): Examples

- \(ParentWithManySons \triangleq (\geq 3ParentOf . Male) \)
- \(\exists ParentOf^− . Citizen \sqsubseteq Citizen \)
- \(ParentOf \sqsubseteq AncestorOf \)
- \(AncestorOf \in R^+ \)
Extensions to \mathcal{ALC}: Semantics

- $(\leq n \cdot R \cdot C)^I = \{ x \mid |\{ y \in C^I \mid (x, y) \in R^I \}| \leq n \}$
- $(\geq n \cdot R \cdot C)^I = \{ x \mid |\{ y \in C^I \mid (x, y) \in R^I \}| \geq n \}$
- Inverse roles: $(R^-)^I = \{ (y, x) \mid (x, y) \in R^I \}$
- $R \sqsubseteq S$ is true in I iff $R^I \subseteq S^I$ for roles R and S.
- $R \in R^+$ is true in I iff $(x, z) \in R^I$ whenever $(x, y) \in R^I$ and $(y, z) \in R^I$
A Tableau Algorithm for \mathcal{ALC}

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ unsatisfiable.

Assume an *unfoldable terminology*:

- Axioms are of the form $A \sqsubseteq C$ and $A \equiv C$ where A is a concept name.
- For each concept name A, at most one axiom of the form $A \sqsubseteq C$ or $A \equiv C$.
- Axioms are acyclic:
 - $A \sqsubseteq C$ or $A \equiv C$ *directly uses* a concept name A_1 iff A_1 occurs in C.
 - $A \sqsubseteq C$ or $A \equiv C$ *uses* a concept name A_1 iff it directly uses A_1 or it directly uses a concept name A_2 and A_2 uses A_1.
 - $A \sqsubseteq C$ or $A \equiv C$ is *acyclic* iff it does not use A.
Show $KB \models A \subseteq B$ by showing $KB \cup \{A \cap \neg B\}$ is unsatisfiable.

Try to prove concept (un)satisfiability by constructing a model.

- A **tableau** is a graph representing such a model.
- A set of tableau **expansion rules** is used to construct the tableau.
- Either a model is constructed or a contradiction is found.
General Method

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \sqsupseteq Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \sqsupseteq B \sqcap C$ where C is a new concept name.

If the query is $A \sqsubseteq B$:
- negate the query to get $A \sqsupseteq \neg B$ (to show unsatisfiable);
- unfold the negated query;
- convert to negation normal form.

Once the negated query has been unfolded, the rest of the KB can be ignored.
General Method

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \vdash Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \dashv B \sqcap C$ where C is a new concept name.

If the query is $A \sqsubseteq B$:

- *negate* the query to get $A \sqcap \neg B$ (to show unsatisfiable);
- *unfold* the negated query;
- *convert* to *negation normal form*.
General Method

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form \(P \models Q \)
 - This can be done by replacing any axiom of the form \(A \sqsubseteq B \) by \(A \models B \sqcap C \) where \(C \) is a new concept name.

If the query is \(A \sqsubseteq B \):

- **negate** the query to get \(A \sqcap \neg B \) (to show unsatisfiable);
- **unfold** the negated query;
- **convert** to *negation normal form*.

\[\vdash \]
Once the negated query has been unfolded, the rest of the KB can be ignored.
Unfold:
Expand every concept name occurring in the (negated) query.

- I.e. if concept C appears in the query and $C \sqsubseteq D$ is in the KB, replace C by D in the query.
 - Recall that for $C \sqsubseteq D$ in the KB, C is a concept name and D is an arbitrary \mathcal{ALC} concept expression.
To Start

Unfold:
Expand every concept name occurring in the (negated) query.

• I.e. if concept C appears in the query and $C \sqsubseteq D$ is in the KB, replace C by D in the query.
 • Recall that for $C \sqsubseteq D$ in the KB, C is a concept name and D is an arbitrary ALC concept expression.

Negation normal form:
Negation occurs only in front of concept names

• $\neg (C \sqcap D)$ gives $\neg C \sqcup \neg D$, and
 $\neg (C \sqcup D)$ gives $\neg C \sqcap \neg D$
• $\neg \exists R . C$ gives $\forall R . \neg C$, and
 $\neg \forall R . C$ gives $\exists R . \neg C$
• $\neg \neg C$ gives C
Algorithm

- Use a tree to represent the model being constructed
- Each node x represents an individual, labelled with a set $L(x)$ of concepts it has to satisfy
 - $C \in L(x)$ implies $x \in C^I$
- Each edge (x, y) represents a pair occurring in the interpretation of a role, labelled with the role name
 - $R = L((x, y))$ implies $(x, y) \in R^I$
To Determine the Satisfiability of a Concept C

- Initialise the tree T with a single node x with $L(x) = \{ C \}$.
- Expand by repeatedly applying a set of expansion rules.
- T is fully expanded when none of the rules can be applied.
- T contains a clash when, for a node y and a concept D, $\bot \in L(y)$ or $\{ D, \neg D \} \subseteq L(y)$.
- If T can’t be expanded without producing a clash, the concept is unsatisfiable.
(\cap\text{-rule}) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).
Expansion Rules

(\cap\text{-rule}) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).

(\cup\text{-rule}) If \((C_1 \cup C_2) \in L(x)\) and \(\{C_1, C_2\} \cap L(x) = \emptyset\) then:
Add \(C_1\) to \(L(x)\).
If this leads to a clash, go back and add \(C_2\) to \(L(x)\).
Expansion Rules

(\cap\text{-rule}) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subset L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).

(\sqcup\text{-rule}) If \((C_1 \sqcup C_2) \in L(x)\) and \(\{C_1, C_2\} \cap L(x) = \emptyset\) then:
Add \(C_1\) to \(L(x)\).
If this leads to a clash, go back and add \(C_2\) to \(L(x)\).

(\exists\text{-rule}) If \(\exists R.C \in L(x)\) and there is no \(y\) s.t. \(L((x, y)) = R\) and \(C \in L(y)\) then:
Create a new node \(y\) and edge \((x, y)\) with \(L(y) = C\) and \(L((x, y)) = R\).
Expansion Rules

(\cap\)-rule) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).

(\cup\)-rule) If \((C_1 \cup C_2) \in L(x)\) and \(\{C_1, C_2\} \cap L(x) = \emptyset\) then:
Add \(C_1\) to \(L(x)\).
If this leads to a clash, go back and add \(C_2\) to \(L(x)\).

(\exists\)-rule) If \(\exists R.C \in L(x)\) and there is no \(y\) s.t. \(L((x, y)) = R\) and \(C \in L(y)\) then:
Create a new node \(y\) and edge \((x, y)\) with \(L(y) = C\) and \(L((x, y)) = R\).

(\forall\)-rule) If \(\forall R.C \in L(x)\) and there is some \(y\) s.t.
\(L((x, y)) = R\) and \(C \not\in L(y)\) then:
Add \(C\) to \(L(y)\).
Interpreting a tree T

- If T contains a clash the concept C is unsatisfiable.
- If T is fully expanded and clash-free, then C is satisfiable.
- In the second case, construct a model I as follows:
 - $\Delta = \{x \mid x \text{ is a node in } T\}$.
 - $A^I = \{x \in \Delta \mid A \in L(x)\}$ for all concept names A in C.
 - $R^I = \{(x, y) \mid (x, y) \text{ is an edge in } T \text{ and } L((x, y)) = R\}$.
Termination of the Algorithm

- The \sqcap-, \sqcup-and \exists-rules can only be applied once to a concept in $L(x)$.
- The \forall-rule can be applied many times to a given $\forall R.C$ expression in $L(x)$, but only once to a given edge (x, y).
- Applying any rule to a concept C extends the labelling with a concept strictly smaller than C.

Therefore the algorithm must terminate.
Tableau Algorithm: Example 1

DL knowledge base:

- \(\text{vegan} \equiv \text{person} \sqcap \forall \text{eats.plant} \)
- \(\text{vegetarian} \equiv \text{person} \sqcap \forall \text{eats.}(\text{plants} \sqcup \text{dairy}) \)

Query: \(\text{vegan} \sqsubseteq \text{vegetarian} \)

Convert to:

- \(\text{vegan} \sqcap \neg \text{vegetarian} \) is unsatisfiable
Example 1

- Unfold and normalise $\text{vegan} \sqcap \neg \text{vegetarian}$:

 $\text{person} \sqcap \forall \text{eats}. \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats}. (\neg \text{plant} \sqcap \neg \text{dairy}))$
Example 1

• Unfold and normalise \(\text{vegan} \sqcap \neg \text{vegetarian} \):
 \(\text{person} \sqcap \forall \text{eats}. \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats}.(\neg \text{plant} \sqcap \neg \text{dairy})) \)

• Initialise \(T \) to \(L(x) \) to contain:
 \(\text{person} \sqcap \forall \text{eats}. \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats}.(\neg \text{plant} \sqcap \neg \text{dairy})) \)
Example 1

- Unfold and normalise $\text{vegan} \sqcap \neg \text{vegetarian}$:
 $\text{person} \sqcap \forall \text{eats} \cdot \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats} \cdot (\neg \text{plant} \sqcap \neg \text{dairy}))$

- Initialise T to $L(x)$ to contain:
 $\text{person} \sqcap \forall \text{eats} \cdot \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats} \cdot (\neg \text{plant} \sqcap \neg \text{dairy}))$

- Apply \sqcap-rule and add to $L(x)$:
 \{ $\text{person}, \forall \text{eats} \cdot \text{plant}, \neg \text{person} \sqcup \exists \text{eats} \cdot (\neg \text{plant} \sqcap \neg \text{dairy})$ \}
Example 1

- Apply \sqcup-rule to $\neg person \sqcup \exists eats. (\neg plant \sqcap \neg dairy)$:
 Add $\neg person$ to $L(x)$: Clash
 Go back and add $\exists eats. (\neg plant \sqcap \neg dairy)$ to $L(x)$
Example 1

- Apply \sqcup-rule to $\neg person \sqcup \exists eats. (\neg plant \sqcap \neg dairy)$:
 Add $\neg person$ to $L(x)$: Clash
 Go back and add $\exists eats. (\neg plant \sqcap \neg dairy)$ to $L(x)$
- Apply \exists-rule to $\exists eats. (\neg plant \sqcap \neg dairy)$:
 Create new node y and new edge (x, y):
 $L(y) = \{\neg plant \sqcap \neg dairy\}; L((x, y)) = eats$
Example 1

• Apply \sqcup-rule to $\neg\text{person} \sqcup \exists\text{eats}.(\neg\text{plant} \sqcap \neg\text{dairy})$: Add $\neg\text{person}$ to $L(x)$: Clash
 Go back and add $\exists\text{eats}.(\neg\text{plant} \sqcap \neg\text{dairy})$ to $L(x)$

• Apply \exists-rule to $\exists\text{eats}.(\neg\text{plant} \sqcap \neg\text{dairy})$: Create new node y and new edge (x, y):
 $L(y) = \{\neg\text{plant} \sqcap \neg\text{dairy}\}; L((x, y)) = \text{eats}$

• Apply \forall-rule to $\forall\text{eats}.\text{plant}$ in $L(x)$ and $L((x, y)) = \text{eats}$: Add plant to $L(y)$
Example 1

• Apply \(\sqcap \)-rule to \(\neg plant \sqcap \neg dairy \) in \(L(y) \):
Add \(\{\neg plant, \neg dairy\} \) to \(L(y) \): Clash
Example 1

- Apply \square-rule to $\neg plant \sqcap \neg dairy$ in $L(y)$:
 Add $\{\neg plant, \neg dairy\}$ to $L(y)$: Clash

- Conclusion
 - Both applications of the \sqcup-rule lead to clashes
 - So $vegan \sqcap \neg vegetarian$ is unsatisfiable
 - So $vegan \sqsubseteq vegetarian$
Example 2

- Query: vegetarian ⊑ vegan
- Convert to: vegetarian ⊓ ¬vegan is satisfiable?
- Unfold and normalise vegetarian ⊓ ¬vegan:
 \[\text{person } \bigwedge \forall \text{eats.}(\text{plant } \bigcup \text{dairy}) \bigcap (\neg \text{person } \bigcup \exists \text{eats.}\neg \text{plant})\]
- Initialise \(T \) to \(L(x) \) to contain:
 \[\{\text{person } \bigwedge \forall \text{eats.}(\text{plant } \bigcup \text{dairy}) \bigcap (\neg \text{person } \bigcup \exists \text{eats.}\neg \text{plant})\}\]
Example 2

- Apply \square-rule and add to $L(x)$:
 \[
 \{ \text{person}, \forall \text{eats.}(\text{plant} \sqcup \text{dairy}), \neg \text{person} \sqcup \exists \text{eats.}\neg \text{plant} \}\]
Example 2

- Apply \forall-rule and add to $L(x)$:
 \[
 \{ \text{person}, \forall \text{eats.} (\text{plant} \sqcup \text{dairy}), \neg \text{person} \sqcup \exists \text{eats.} \neg \text{plant} \}
 \]

- Apply \sqcup-rule to $\neg \text{person} \sqcup \exists \text{eats.} \neg \text{plant}$:
 Add $\neg \text{person}$ to $L(x)$: Clash
 Go back and add $\exists \text{eats.} \neg \text{plant}$ to $L(x)$
Example 2

- Apply \(\Box \)-rule and add to \(L(x) \):
 \[
 \{ \text{person}, \forall \text{eats.}(\text{plant} \sqcup \text{dairy}), \neg \text{person} \sqcup \exists \text{eats.} \neg \text{plant} \}
 \]

- Apply \(\sqcup \)-rule to \(\neg \text{person} \sqcup \exists \text{eats.} \neg \text{plant} \):
 Add \(\neg \text{person} \) to \(L(x) \): Clash
 Go back and add \(\exists \text{eats.} \neg \text{plant} \) to \(L(x) \)

- Apply \(\exists \)-rule to \(\exists \text{eats.} \neg \text{plant} \):
 Create new node \(y \) and new edge \((x, y) \)
 \(L(y) = \{ \neg \text{plant} \} \); \(L((x, y)) = \text{eats} \)
Example 2

- Apply \forall-rule to $\forall\text{eats.}(\text{plant} \sqcup \text{dairy})$ in $L(x)$ and $L((x, y)) = \text{eats}$:
 Add $\text{plant} \sqcup \text{dairy}$ to $L(y)$
Example 2

• Apply \forall-rule to $\forall eats. (plant \sqcup dairy)$ in $L(x)$ and $L((x, y)) = eats$:
 Add $plant \sqcup dairy$ to $L(y)$

• Apply \sqcup-rule to $plant \sqcup dairy$ in $L(y)$:
 Add $plant$ to $L(y)$: Clash
 Go back and add $dairy$ to $L(y)$

• Conclusion
 No rules are applicable, so T is fully expanded
 So vegetarian $\sqcap \neg$ vegan is satisfiable
 So vegetarian $\not\sqsubseteq$ vegan
Example 2

- Apply \forall-rule to $\forall eats. (plant \sqcup dairy)$ in $L(x)$ and $L((x,y)) = eats$:
 Add $plant \sqcup dairy$ to $L(y)$
- Apply \sqcup-rule to $plant \sqcup dairy$ in $L(y)$:
 Add $plant$ to $L(y)$: Clash
 Go back and add $dairy$ to $L(y)$
- Conclusion
 - No rules are applicable, so T is fully expanded
 - So $vegetarian \sqcap \neg vegan$ is satisfiable
 - So $vegetarian \not\subset vegan$
The Brachman&Levesque DL and \(\mathcal{ALC} \)

<table>
<thead>
<tr>
<th>Constructor</th>
<th>B&L</th>
<th>(\mathcal{ALC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conj.</td>
<td>((\text{AND } A \ B))</td>
<td>(A \sqcap B)</td>
</tr>
<tr>
<td>Univ. quant.</td>
<td>((\text{ALL } R \ C))</td>
<td>(\forall R.C)</td>
</tr>
<tr>
<td>Exist. quant.</td>
<td>((\text{EXISTS } 1 \ R))</td>
<td>(\exists R.\top)</td>
</tr>
<tr>
<td>Unqual. exist. quant.</td>
<td>((\text{EXISTS } n \ R))</td>
<td>((\text{FILLS } R \ a))</td>
</tr>
<tr>
<td>Assertion</td>
<td>(a \rightarrow C)</td>
<td>(C(a))</td>
</tr>
</tbody>
</table>

- \(\mathcal{FL}^- \) consists of Conj., Univ. quant., and Unqual. exist. quant.
- The B&L DL is slightly more general than \(\mathcal{FL}^- \).
- \(\mathcal{ALC} \) is \(\mathcal{FL}^- \) plus \(\top, \bot \), and general negation.
- The extension to \(\mathcal{ALC} \) for a role filler would use \(\forall R.\{a\} \).
References

• Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, Peter Patel-Schneider (ed.): The Description Logic Handbook

• http://www.inf.unibz.it/~franconi/dl/course/

• http://www.dl.kr.org