Bare Metal Introduction
Runtime Environment of Bare Metal

Linux

- User application using C Library
- Linux Kernel
- Device Drivers

Bare Metal

- Hardware
Bare Metal Intro

- There are no OS services
 - ..
 - ..
 - ..
 - drivers (LEDs, WatchDog, Network)
 - apps (node.js, native GCC, X11)

- Embedded OS's:
 - Full Feature:
 Linux, Windows Embedded, Android, QNX
 - Low level:
 Custom RTOS (Real Time OS); many others!
Bare Metal Advantages

- Advantages of running bare metal
 - ..
 - no extra code running (certification issues)
 - no "wasted" space (if small device)
 - ..
 (no context switches, pre-emption, page-faults....)
 - some hardware not powerful enough to run full OS
 (no MMU for protected memory, <2 meg ram...)
Practical Differences

- no stdin/stdout
- use UART: Universal Asynchronous Receiver-Transmitter

- main() uses a while(1) {...}

- vs via OS drivers
 - Try to use library to abstract the access a little.

- StarterWare UART modules
 - UART: low-level reads and writes to serial port.
 - must initialize first.
 - ConsoleUtils: high-level printf and scanf
Compile & Boot Process
Compile & Boot: UBoot Prompt

Host

• Compile app: bm_uart.bin
 - bm_uart.c + StarterWare
 - Use Linaro GCC
 (arm-none-eabi)

• Deploy
 - copy bm_uart.bin to
 ~/cmpt433/public/baremetal
 - ..

• Easy to change on host
 - TFTP server of download.bin

Target

• In UBoot:
 - press a key
 (to get prompt)
 - => tftp ... download.bin
 - => go ...

• Bare metal App:
 - runs from address
 0x8000 0000
Compile & Boot: uEnv.txt

• UBoot loads uEnv.txt for boot commands
 - boot Linux with /boot/uEnv.txt on eMMC
 - can change uEnv.txt to boot bare metal.
 - before edits, create backup copies.

• UBoot can copy files on eMMC
 - to change ‘default’ boot commands, copy the correct file into uEnv.txt

• Technical note
 - Our UBoot actually looks for different uEnv.txt files and handles them differently.
 - For bare metal, put commands in /uEnv.txt. Boot Linux by wiping /uEnv.txt’s contents.
UART Tx Demo

- Compile bm_uart.c on host
- Link it in public folder as download.bin
- Load on target and see printing out.
- When running, board reboots!
 - WD started (by UBoot?); reboots in ~45s
 - Hit the watch by adding:
 #include "watchdog.h"
 in main():
 WatchdogTimerSet(SOC_WDT_1_REGS, ...);
Demo Setup Configuration (1/2)

Show the folders for the following:

- **Host:**
 - **General**
 - StarterWare
 (~/cmpt433/AM335X_StarterWare_02_00_01_01)
 - Linaro GCC (~/cmpt433/linaro-gcc)
 - **App**
 - bm_uart.c, load-script, Makefile
 - Deploy (~/cmpt433/public/baremetal)
 ln -s xyz.bin download.bin
Demo Setup Configuration (2/2)

- **Target**
 - uEnv.txt
 - Bare metal: /boot/uEnvBareMetal.txt
 - Linux: /boot/uEnvLinux.txt
 - default /uEnv.txt for bare metal; /boot/uEnv.txt for Linux

- **Booting Demo**
 - Select Bare Metal:
 => ext4load mmc 1:1 0x82000000 /boot/uEnvBareMetal.txt
 => ext4write mmc 1:1 0x82000000 /uEnv.txt ${filesize}
 => boot
 - Select Linux:
 => ext4write mmc 1:1 0x82000000 /uEnv.txt 0
 => boot
Summary

- Bare metal apps give you full control of the hardware, but you lose the benefits of a full OS.
 - No terminal: use a UART
 - main() never exits
 - direct access to hardware registers
- Configure uEnv.txt for booting
 - host links download.bin to the actual application file to allow us to easily change the link on the host and change the app we download.