R-Tree

• An R-tree is a depth-balanced tree
 – Each node corresponds to a disk page
 – Leaf node: an array of leaf entries
 • A leaf entry: (mbb, oid)
 – Non-leaf node: an array of node entries
 • A node entry: (dr, nodeid)
\[m=2, \ M=4 \]
Properties

• The number of entries of a node (except for the root) in the tree is between m and M where $m \in [0, M/2]$
 - M: the maximum number of entries in a node, may differ for leaf and non-leaf nodes
 $M = \left\lfloor \frac{\text{size}(P)}{\text{size}(E)} \right\rfloor$ \(P: \text{disk page} \quad E: \text{entry} \)
 - The root has at least 2 entries unless it is a leaf
• All leaf nodes are at the same level
• An R-tree of depth d indexes at least m^{d+1} objects and at most M^{d+1} objects, in other words, \(\left\lfloor \log_M N - 1 \right\rfloor \leq d \leq \left\lfloor \log_m N - 1 \right\rfloor \)
Search with R-tree

• Given a point \(q \), find all mbbs containing \(q \)
• A recursive process starting from the root

 \[
 \text{result} = \emptyset
 \]

 For a node \(N \)

 if \(N \) is a leaf node, then \(\text{result} = \text{result} \cup \{N\} \)

 else // \(N \) is a non-leaf node

 for each child \(N' \) of \(N \)

 if the rectangle of \(N' \) contains \(q \)
 then recursively search \(N' \)
Time complexity of search

- If mbbs do not overlap on q, the complexity is $O(\log_m N)$.
- If mbbs overlap on q, it may not be logarithmic, in the worst case when all mbbs overlap on q, it is $O(N)$.
Insertion – choose a leaf node

• Traverse the R-tree top-down, starting from the root, at each level
 – If there is a node whose directory rectangle contains the mbb to be inserted, then search the subtree
 – Else choose a node such that the enlargement of its directory rectangle is minimal, then search the subtree
 – If more than one node satisfy this, choose the one with smallest area,

• Repeat until a leaf node is reached
Insertion – insert into the leaf node

- If the leaf node is not full, an entry [mbb, oid] is inserted
- Else // the leaf node is full
 - Split the leaf node
 - Update the directory rectangles of the ancestor nodes if necessary
Insert object 15

$m=2, M=4$

\[R \]

\[a \quad [1,2,5,6] \quad b \quad [3,4,7,10] \quad c \quad [8,9,14] \quad d \quad [11,12,13,15] \]
Insert object 16

$m = 2, M = 4$

[1,2,5,6][3,4,7][10,16] [8,9,14][11,12,13,15]
Split - goal

• The leaf node has M entries, and one new entry to be inserted, how to partition the $M+1$ mbbs into two nodes, such that
 – 1. The total area of the two nodes is minimized
 – 2. The overlapping of the two nodes is minimized

• Sometimes the two goals are conflicting
 – Using 1 as the primary goal
Split - solution

• Optimal solution: check every possible partition, complexity $O(2^{M+1})$

• A quadratic algorithm:
 – Pick two “seed” entries e_1 and e_2 far from each other, that is to maximize
 area(mbb(e_1, e_2)) – area(e_1) – area(e_2)
 here mbb(e_1, e_2) is the mbb containing both e_1 and e_2, complexity $O((M+1)^2)$
 – Insert the remaining $(M-1)$ entries into the two groups
Quadratic split cont.

• A greedy method
• At each time, find an entry e such that e expands a group with the minimum area, if tie
 – Choose the group of small area
 – Choose the group of fewer elements
• Repeat until no entry left or one group has $(M-m+1)$ entries, all remaining entries go to another group
• If the parent is also full, split the parent too. The recursive adjustment happens bottom-up until the tree satisfies the properties required. This can be up to the root.