LP Rounding

Design and Analysis of Algorithms
Andrei Bulatov

30/11/2016

Linear Programming

Instance
Objective function: \(z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \)
Constraints:
- \(a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n \leq b_1 \)
- \(a_{21} x_1 + a_{22} x_2 + \ldots + a_{2n} x_n \leq b_2 \)
- \(a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n \leq b_m \)

Objective
Find values of the variables that satisfy all the constraints and maximize the objective function.

Weighted Vertex Cover

Instance
An undirected graph \(G = (V, E) \) with vertex weights \(w_i \geq 0 \)
Objective
Find a minimum weight subset of nodes \(S \) such that every edge is incident to at least one vertex in \(S \)

Weighted Vertex Cover: IP Formulation

Integer programming formulation.
- Model inclusion of each vertex \(i \) using a 0/1 variable \(x_i \).
- Vertex covers in 1-1 correspondence with 0/1 assignments: \(S = \{ i \in V : x_i = 1 \} \)
- Objective function: minimize \(\sum_i w_i x_i \).
- Must take either \(i \) or \(j \): \(x_i + x_j \geq 1 \).

Integer Programming

Given integers \(a_j \) and \(b_j \), find integers \(x_j \) that satisfy:
\[
\max \sum_{j=1}^{m} x_j b_j \quad \text{subject to} \quad \sum_{i=1}^{n} a_{ij} x_j \geq b_j, \quad 1 \leq j \leq m
\]
\[
x_j \geq 0, \quad 1 \leq j \leq m
\]

Observation.
Vertex cover formulation proves that integer programming is NP-hard search problem.

Compare to Linear Programming.
Weighted Vertex Cover: LP Relaxation

Weighted vertex cover: Linear programming formulation.

\[
(LP) \min \sum_{i \in V} w_i x_i \\
\text{such that} \quad x_i + x_j \geq 1 \quad (i, j) \in E \\
x_i \geq 0 \quad i \in V
\]

Observation.
Optimal value of \((LP)\) is less than or equal to the optimal value of \((ILP)\).

Proof
LP has fewer constraints.

Weighted Vertex Cover

Theorem
If \(x^*\) is optimal solution to \((LP)\), then \(S = \{i \in V : x^*_i \geq \frac{1}{2}\}\) is a vertex cover whose weight is at most twice the min possible weight.

Proof.
\(S\) is a vertex cover:
Consider an edge \((i, j)\) \(\in E\).
Since \(x^*_i + x^*_j \geq 1\), either \(x^*_i \geq \frac{1}{2}\) or \(x^*_j \geq \frac{1}{2}\) implying \((i, j)\) covered.

\(S\) has desired cost:
Let \(S^*\) be optimal vertex cover. Then
\[
\sum_{i \in S^*} w_i \geq \frac{1}{2} \sum_{i \in S} w_i
\]

Open research problem.
Close the gap.

Theorem [Dinur-Safra, 2001]
If \(P \neq NP\), then no \(\rho\)-approximation for \(\rho < 1.3607\), even with unit weights.

Generalized Load Balancing

Instance
Set of \(m\) machines \(M\); set of \(n\) jobs \(J\).
Job \(j\) must run continuously on an authorized machine in \(M_{j} \subseteq M\).
Job \(j\) has processing time \(t_j\).
Each machine can process at most one job at a time.
Let \(J(i)\) be the subset of jobs assigned to machine \(i\). The load of machine \(i\) is \(L_i = \sum_{j \in J(i)} t_j\).
The makespan is the maximum load on any machine \(= \max_i L_i\).

Objective
Assign each job to an authorized machine to minimize makespan.

GLB: Integer Linear Program

ILP formulation: \(x_i\) denotes the time machine \(i\) spends processing job \(j\).

\[
(LP) \min \sum_{i \in M} L_i \\
\text{such that} \quad \sum_{j \in J} x_{ij} = t_j \quad \text{for all} \quad j \in J \\
\sum_{j \in J} x_{ij} \leq L_i \quad \text{for all} \quad i \in M \\
x_{ij} \in (0, t_j) \quad \text{for all} \quad j \in J \text{ and } i \in M_j \\
x_{ij} = 0 \quad \text{for all} \quad j \in J \text{ and } i \in M_j
\]
GLB: Linear Program Relaxation

LP relaxation.

\[
(LP) \begin{align*}
\min & \quad L \\
\text{such that} & \quad \sum_j x_{ij} = t_j \quad \forall j \in J \\
& \quad \sum_i x_{ij} \leq L \quad \forall i \in M \\
& \quad x_{ij} \geq 0 \quad \forall j \in J \text{ and } i \in M_j \\
& \quad x_{ij} = 0 \quad \forall j \in J \text{ and } i \in M_j
\end{align*}
\]

GLB: Lower Bounds

Lemma 1

Let \(L \) be the optimal value to the LP. Then, the optimal makespan \(L^* \geq L \).

Proof.

LP has fewer constraints than IP formulation.

Lemma 2

The optimal makespan \(L^* \geq \max_j t_j \).

Proof.

Some machine must process the most time-consuming job.

GLB: Structure of LP Solution

Lemma 3

Let \(x \) be solution to LP. Let \(G(x) \) be the graph with an edge from machine \(i \) to job \(j \) if \(x_{ij} > 0 \). Then \(G(x) \) is acyclic.

Proof. (deferred)

can transform \(x \) into another LP solution where \(G(x) \) is acyclic if LP solver doesn’t return such an \(x \).

GLB: Rounding

Rounded solution: Find LP solution \(x \) where \(G(x) \) is a forest. Root forest \(G(x) \) at some arbitrary machine node \(r \).

If job \(j \) is a leaf node, assign \(j \) to its parent machine \(i \).

If job \(j \) is not a leaf node, assign \(j \) to one of its children.

Lemma 4.

Rounded solution only assigns jobs to authorized machines.

Proof.

If job \(j \) is assigned to machine \(i \), then \(x_{ij} > 0 \). LP solution can only assign positive value to authorized machines.

GLB: Analysis

Proof.

Let \(J(i) \) be the jobs assigned to machine \(i \). By Lemma 5, the load \(L \) on machine \(i \) has two components:

- leaf nodes
 \[
 \sum_{j : \text{leaf}} t_j = \sum_{j : \text{leaf}} x_{ij} \leq L \leq L^* \quad \text{Lemma 5 (LP is a relaxation)}
 \]
 \[
 \text{optimal value of LP}
 \]

- parent(i)
 \[
 f_{\text{parent}(i)} \leq L^* \quad \text{Lemma 6}
 \]

Thus, the overall load \(L \leq 2L^* \).
GLB: Flow Formulation

Flow formulation of LP.
\[
\begin{align*}
\sum_{j} x_{ij} &= t_j \quad \text{for all } j \in J \\
\sum_{i} x_{ij} &\leq L \quad \text{for all } i \in M \\
x_{ij} &\geq 0 \quad \text{for all } j \in J \text{ and } i \in M_j \\
x_{ij} &= 0 \quad \text{for all } j \in J \text{ and } i \notin M_j
\end{align*}
\]

Observation.
Solution to feasible flow problem with value \(L \) are in one-to-one correspondence with LP solutions of value \(L \).

GLB: Structure of Solution

Lemma 3.
Let \((x, L)\) be solution to LP. Let \(G(x) \) be the graph with an edge from machine \(i \) to job \(j \) if \(x_{ij} > 0 \). We can find another solution \((x', L)\) such that \(G(x') \) is acyclic.

Proof.
Let \(C \) be a cycle in \(G(x) \).
- Augment flow along the cycle \(C \).
- At least one edge from \(C \) is removed (and none are added).
- Repeat until \(G(x') \) is acyclic.

Conclusions

Running time:
The bottleneck operation in our 2-approximation is solving one LP with \(mn + 1 \) variables.

Remark.
Can solve LP using flow techniques on a graph with \(m+n+1 \) nodes: given \(L \), find feasible flow if it exists. Binary search to find \(L^* \).

Extensions:
unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
- Job \(j \) takes \(t_j \) time if processed on machine \(i \).
- 2-approximation algorithm via LP rounding.
- No 3/2-approximation algorithm unless \(P = NP \).