8.3 Definition of NP
Decision Problems

Decision problem.
- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem X: $A(s) = \text{yes}$ iff $s \in X$.

Polynomial time. Algorithm A runs in poly-time if for every string s, $A(s)$ terminates in at most $p(|s|)$ "steps", where $p(\cdot)$ is some polynomial.

PRIMES: $X = \{ 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, \ldots \}$

Certification algorithm intuition.
Certifier doesn't determine whether \(s \in X \) on its own; rather, it checks a proposed proof \(t \) that \(s \in X \).

Def. Algorithm \(C(s, t) \) is a certifier for problem \(X \) if for every string \(s \), \(s \in X \) iff there exists a string \(t \) such that \(C(s, t) = \text{yes} \).

NP. Decision problems for which there exists a poly-time certifier.

Remark. NP stands for nondeterministic polynomial-time.
Certifiers and Certificates: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover |t| \(\leq |s| \).

Certifier.

```java
boolean C(s, t) {
    if (t \leq 1 or t \geq s)
        return false
    else if (s is a multiple of t)
        return true
    else
        return false
}
```

Instance. s = 437,669.

Certificate. t = 541 or 809. \(437,669 = 541 \times 809 \)

Conclusion. COMPOSITES is in NP.
Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

Ex.

$$
\overline{x_1} \lor x_2 \lor x_3 \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_1 \lor \overline{x_3} \lor \overline{x_4})
$$

instance s

$x_1 = 1, \ x_2 = 1, \ x_3 = 0, \ x_4 = 1$

certificate t

Conclusion. SAT is in NP.
Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.
P. Decision problems for which there is a poly-time algorithm.

EXP. Decision problems for which there is an exponential-time algorithm.

NP. Decision problems for which there is a poly-time certifier.

Claim. $P \subseteq NP$.

Pf. Consider any problem X in P.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate: $t = \epsilon$, certifier $C(s, t) = A(s)$.

Claim. $NP \subseteq EXP$.

Pf. Consider any problem X in NP.

- By definition, there exists a poly-time certifier $C(s, t)$ for X.
- To solve input s, run $C(s, t)$ on all strings t with $|t| \leq p(|s|)$.
- Return yes, if $C(s, t)$ returns yes for any of these.
The Main Question: P Versus NP

Does $P = NP$? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
- Is the decision problem as easy as the certification problem?
- Clay 1 million prize.

If $P \neq NP$:
- No efficient algorithms possible for 3-COLOR, TSP, FACTOR, SAT, ...

If $P = NP$:
- Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
- $P = NP$ would break RSA cryptography (and potentially collapse economy)

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

Consensus opinion on $P = NP$? Probably no.
8.4 NP-Completeness
Polynomial Transformation

Def. Problem Y *polynomial reduces* (Cook) to problem X if arbitrary instances of problem Y can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem X.

Def. Problem Y *polynomial transforms* (Karp) to problem X if given any input y to Y, we can construct an input x such that y is a *yes* instance of Y iff x is a *yes* instance of X.

\[\text{we require } |x| \text{ to be of size polynomial in } |y| \]

Note. Polynomial transformation is polynomial reduction with just one call to oracle for X, exactly at the end of the algorithm for Y. Almost all previous reductions were of this form.

Open question. Are these two concepts the same?

\[\text{we abuse notation } \leq^p \text{ and blur distinction} \]
NP-Complete

NP-complete. A problem X in NP with the property that for every problem Y in NP, $Y \leq_p X$.

Theorem. Suppose X is an NP-complete problem. Then X is solvable in poly-time iff $P = NP$.

Pf. \Leftarrow If $P = NP$ then X can be solved in poly-time since X is in NP.

Pf. \Rightarrow Suppose X can be solved in poly-time.

- Let Y be any problem in NP. Since $Y \leq_p X$, we can solve Y in poly-time. This implies $NP \subseteq P$.
- We already know $P \subseteq NP$. Thus $P = NP$. ▪

Fundamental question. Do there exist "natural" NP-complete problems?
Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?

yes: 1 0 1
The "First" NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

Pf. (sketch)

- Any algorithm that takes a fixed number of bits n as input and produces a yes/no answer can be represented by such a circuit. Moreover, if algorithm takes poly-time, then circuit is of poly-size.

- Consider some problem X in NP. It has a poly-time certifier $C(s, t)$. To determine whether s is in X, need to know if there exists a certificate t of length $p(|s|)$ such that $C(s, t) = \text{yes}$.

- View $C(s, t)$ as an algorithm on $|s| + p(|s|)$ bits (input s, certificate t) and convert it into a poly-size circuit K.
 - first $|s|$ bits are hard-coded with s
 - remaining $p(|s|)$ bits represent bits of t

- Circuit K is satisfiable iff $C(s, t) = \text{yes}$.

sketchy part of proof; fixing the number of bits is important, and reflects basic distinction between algorithms and circuits
Example

Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.

$G = (V, E), n = 3$

\[\binom{n}{2} \text{ hard-coded inputs (graph description)} \quad n \text{ inputs (nodes in independent set)} \]
Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_p Y$.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_p Y$ then Y is NP-complete.

Pf. Let W be any problem in NP. Then $W \leq_p X \leq_p Y$.

- By transitivity, $W \leq_p Y$.
- Hence Y is NP-complete. •
Theorem. 3-SAT is NP-complete.

Pf. Suffices to show that CIRCUIT-SAT ≤ₚ 3-SAT since 3-SAT is in NP.

- Let K be any circuit.
- Create a 3-SAT variable x_i for each circuit element i.
- Make circuit compute correct values at each node:
 - $x_2 = \neg x_3 \Rightarrow$ add 2 clauses: $x_2 \lor x_3, \overline{x_2} \lor \overline{x_3}$
 - $x_1 = x_4 \lor x_5 \Rightarrow$ add 3 clauses: $x_1 \lor \overline{x_4}, x_1 \lor \overline{x_5}, x_1 \lor \overline{x_4} \lor \overline{x_5}$
 - $x_0 = x_1 \land x_2 \Rightarrow$ add 3 clauses: $\overline{x_0} \lor x_1, \overline{x_0} \lor x_2, x_0 \lor \overline{x_1} \lor \overline{x_2}$

- Hard-coded input values and output value.
 - $x_5 = 0 \Rightarrow$ add 1 clause: $\overline{x_5}$
 - $x_0 = 1 \Rightarrow$ add 1 clause: x_0

- Final step: turn clauses of length < 3 into clauses of length exactly 3.

\[\overline{x_5} \lor \overline{x_4} \lor x_3, \overline{x_5} \lor \overline{?} \lor ? , \overline{?} \lor \overline{?} \lor x_0 \]
Observation. All problems below are NP-complete and polynomial reduce to one another!

by definition of NP-completeness
Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.
8.9 co-NP and the Asymmetry of NP
Asymmetry of NP. We only need to have short proofs of \texttt{yes} instances.

\textbf{Ex 1. SAT vs. TAUTOLOGY.}
- Can prove a CNF formula is satisfiable by giving such an assignment.
- How could we prove that a formula is \texttt{not} satisfiable?

\textbf{Ex 2. HAM-CYCLE vs. NO-HAM-CYCLE.}
- Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
- How could we prove that a graph is \texttt{not} Hamiltonian?
NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. SAT, HAM-CYCLE, COMPOSITES.

Def. Given a decision problem X, its complement \overline{X} is the same problem with the yes and no answers reverse.

Ex. $\overline{X} = \{ 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, \ldots \}$

$X = \{ 2, 3, 5, 7, 11, 13, 17, 23, 29, \ldots \}$

co-NP. Complements of decision problems in NP.
Ex. TAUTOLOGY, NO-HAM-CYCLE, PRIMES.
Fundamental question. Does NP = co-NP?

- Do yes instances have succinct certificates iff no instances do?
- Consensus opinion: no.

Theorem. If NP ≠ co-NP, then P ≠ NP.

Pf idea.

- P is closed under complementation.
- If P = NP, then NP is closed under complementation.
- In other words, NP = co-NP.
- This is the contrapositive of the theorem.
Good Characterizations

Good characterization. [Edmonds 1965] \(\text{NP} \cap \text{co-NP} \).
- If problem X is in both NP and co-NP, then:
 - for yes instance, there is a succinct certificate
 - for no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching.
- If yes, can exhibit a perfect matching.
- If no, can exhibit a set of nodes \(S \) such that \(|N(S)| < |S| \).
Good Characterizations

Observation. $P \subseteq NP \cap co-NP$.
- Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in P.
- Sometimes finding a good characterization seems easier than finding an efficient algorithm.

Fundamental open question. Does $P = NP \cap co-NP$?
- Mixed opinions.
- Many examples where problem found to have a non-trivial good characterization, but only years later discovered to be in P.
 - linear programming [Khachiyan, 1979]
 - primality testing [Agrawal-Kayal-Saxena, 2002]
A Note on Terminology: Consensus

NP-complete. A problem in NP such that every problem in NP polynomial reduces to it.

NP-hard. A decision problem such that every problem in NP reduces to it.

NP-hard search problem. A problem such that every problem in NP reduces to it.