
CMPT 497 CAPSTONE PROJECT

COURSE MANAGEMENT SYSTEM

by

Kamchon Chio

a Report submitted in partial fulfillment

of the requirements for the SFU-ZU dual degree of

Bachelor of Science

in the School of Computing Science

Simon Fraser University

and

the College of Computer Science and Technology

Zhejiang University

c© Kamchon Chio 2010

SIMON FRASER UNIVERSITY AND ZHEJIANG UNIVERSITY

Spring 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Kamchon Chio

Degree: Bachelor of Science

Title of Report: CMPT 497 Capstone Project Course Management System

Examining Committee: None

Chair

Dr. Greg Baker, Supervisor

Dr. Ramesh Krishnamurti, Supervisor

Dr. Qianping Gu, SFU Examiner

Date Approved:

ii

Abstract

This project develops a course management web system that aims to replace the current

systems used by the School of Computing Science at Simon Fraser University (SFUCS).

SFUCS has several disparate systems for course management. Those generally used by in-

structors are: GradeBook, Assignment Submission Web Service and WebCT. These systems

lack some critical functions. In addition a user has to manually (or using other software)

transfer data from one system to another for the data sharing among the systems. The

new course management system developed in this project provides a central point in terms

of course management which includes four components: Grades component, Marking com-

ponent, Submission component and Group Management component. The system also im-

plements new functionalities and stringent validation logic within each system component.

All the functionalities are developed with intuitive and effective web user interface. My

responsibility in this project is to develop the Grades component.

iii

Contents

Approval ii

Abstract iii

Contents iv

List of Figures vii

1 Introduction 1

1.1 Old system . 1

1.1.1 GradeBook . 1

1.1.2 Assignment submission web service . 2

1.1.3 WebCT . 2

1.1.4 Marking service . 2

1.2 New system . 3

2 Course Management System Components 4

2.1 Grades component . 4

2.2 Marking component . 5

2.3 Submission component . 6

2.4 Group Management component . 7

3 Project Technologies and Management 8

3.1 Technologies . 8

3.1.1 Django . 9

3.1.2 HTML5 . 9

iv

3.1.3 JQuery . 10

3.2 Project management . 10

4 System Design 11

4.1 MVC paradigm . 11

4.2 Middleware . 12

4.3 Logging service . 13

5 Overview of the Grades Component 14

5.1 The data models . 14

5.1.1 Activity type model . 15

5.1.2 Grade type model . 17

5.2 Core functionalities at instructor/TA side . 18

5.2.1 Course view . 18

5.2.2 Activity view . 19

5.2.3 Activity group view . 21

5.2.4 Adding/editing an activity . 22

5.2.5 Adding/Editing a calculated numeric activity 23

5.2.6 The formula parser . 23

5.2.7 Reordering the activity position . 25

5.2.8 Calculating the numeric grade . 26

5.2.9 Marking student . 27

5.3 Core functionalities in student side . 27

5.3.1 Course view . 28

6 Overview of Marking Component 30

6.1 Core functionalities at instructor/TA side . 30

6.1.1 Configuring marking component . 30

6.1.2 Marking student . 31

6.1.3 Examining marking summary . 32

6.2 Core functionalities at student side . 33

6.2.1 Examining marking summary . 33

v

7 Overview of the Submission Component 34

7.1 Core functionalities at instructor/TA side . 34

7.1.1 Configuring submission component . 34

7.1.2 Examining student’s submission . 34

7.2 Core functionalities at student side . 36

7.2.1 Submitting activity components . 36

8 Overview of the Group Management Component 38

8.1 Core functionalities at instructor/TA side . 38

8.1.1 Managing student group . 38

8.2 Core functionalities at student side . 41

8.2.1 Managing group . 41

9 Conclusion and Future Improvement 42

Bibliography 44

vi

List of Figures

4.1 Code structure . 11

4.2 System middleware . 12

5.1 Activity models . 15

5.2 Grade models . 17

5.3 Instructor’s landing view in a course . 18

5.4 Instructor/TA’s view in a course activity . 19

5.5 News feeds . 20

5.6 Instructor/TA’s group view in a group course activity 21

5.7 Adding/editing activity . 22

5.8 Adding/editing calculated numeric activity 23

5.9 Instructor/TA’s view in a calculated numeric activity 26

5.10 Marking student . 27

5.11 Student’s landing view in a course . 28

5.12 Student’s course activity view . 29

6.1 Instruct/TA’ view on configuring marking components 30

6.2 Instruct/TA’ view on marking components 31

6.3 Instruct/TA’ view on marking summary . 32

7.1 Instruct/TA’ view on configuring submission components 35

7.2 Instruct/TA’ view on examining student’s submission 35

7.3 Student’s view on examining activity submissions 36

7.4 Student’s view on submitting activity components 37

8.1 Instruct/TA’ view on managing student group 39

vii

8.2 Instruct/TA’ view on creating group . 39

8.3 Student’s view on managing group . 40

8.4 Student’s view on creating group . 40

viii

Chapter 1

Introduction

GradeBook, Assignment Submission Web Service and WebCT are the most prevalent course

management services used within the School of Computing Science at Simon Fraser Univer-

sity (SFUCS). These services just provide limited functionalities within their own service

domain. Users always find the systems hard to use and find the user interfaces not very

user-friendly. A lot of work has to be done manually due to the lack of central management

among these services. Moreover, some systems have been in existence for over a decade, and

do not take advantage of modern software development technologies. In order to see more

clearly why the old systems need to be replaced, I provide an overview of the old systems

and their pitfalls.

The rest of the paper is structured as follow: In the rest of this chapter, I provide an

overview of the old systems and their pitfalls. In Chapter 2, I describe the function domain of

the new system. In Chapter 3, I describe the web development technologies and the project

management. In Chapter 4, I briefly describe the system architecture. In Chapter 5, I give

an overview of the system component that I work on. In Chapter 6, I give a conclusion of

the new system and share my idea of future improvement.

1.1 Old system

1.1.1 GradeBook

Gradebook is widely used within SFUCS. Course registration data are retrieved from Stu-

dent Information System (SIS) and reside in GradeBook’s database system. This system

1

CHAPTER 1. INTRODUCTION 2

provides basic functions to manage course activities and student grades. However, limited

functionalities are provided for an instructor to manage student grades. Student grade can

only be in numeric format and there is no way to distinguish the grade status (e.g., academic

dishonesty). There is no communication bridge between GradeBook and Assignment Sub-

mission Web Service (see Section 1.1.2) due to which an instructor has to manually relate

information between these systems. Functions such as import/export as CSV file format1,

news feed, group management and calculation of numeric grade are not provided. Thus, the

system does not effectively facilitate an instructor to manage a course.

1.1.2 Assignment submission web service

Assignment submission web service is widely used within SFUCS. Assignment submission

data are retrieved from GradeBook. However, as mentioned in the previous section, this

service is loosely coupled with GradeBook and users find it troublesome to use. Moreover,

every submission can have only one submission component for which the submission type

is limited to a compressed file. This restricts the submission type that can be applied to

an assignment, for example, a coding assignment requires only code files, a web application

requires only a web link, etc. There is no way to manage the ownership of marking a

submission and manual work is required to maintain the information.

1.1.3 WebCT

WebCT is widely used within all SFU faculties. It tries to deliver every possible function

that is needed for course management. Instructor finds it hard to use because of the wide

range of functionalities and some misleading operations. The interface is not user friendly.

Thus, instructors in SFUCS are not willing to use WebCT. Instead, they use GradeBook

for simplicity.

1.1.4 Marking service

There is a marking service that was written by a SFUCS faculty member, Greg Baker. This

system gets the course activity data from GradeBook and provides marking functionalities

based on the activity information. However, the two systems are still loosely coupled and

1CSV is a comma-seperated values file used for the digital storage of data structured in a table of lists
form[8]

CHAPTER 1. INTRODUCTION 3

users have to log into two different systems in order to relate the information with each

other. Moreover, there is no communication bridge between marking service and assignment

submission web service. Thus, the marking service is not popular and has only a few users.

1.2 New system

In this project, a new system is implemented to replace the old systems to provide more

convenient and efficient course management. The new system integrates the GradeBook,

Assignment Submission Web Service and Marking Service into a central course management

system with single user authentication and authorization point, common databases and

enhanced functionalities. The system is called Course Management System (CMS). We

divide the CMS into four major components: Grades, Marking, Submission and Group

Management. These components, excluding Group Management, are related to the original

systems by the names. The Group Management component which is not implemented in

the old system provides student group management functionalities. The rest of this report

is structed as follows: In Chapter 2, I describe the function domain of the new system. In

Chapter 3, I describe the web development technologies and the project management. In

Chapter 4, I briefly describe the system architecture. In Chapter 5, I give an overview of the

system component that I work on. In Chapter 6, I give an overview of Marking component.

In Chapter 7, I give an overview of Submission component. In Chapter 8, I give an overview

of Group Management component. In Chapter 9, I give a conclusion of the new system and

share my idea of future improvement.

Chapter 2

Course Management System

Components

Each component in the CMS is targeted to realize the functionalities of the corresponding

old system and additional new functionalities. The remaining sections in this chapter list

the function scope of each component in details.

2.1 Grades component

• Course activity has four types: numeric activity, letter activity, calculated numeric

activity and calculated letter activity. Activity has a due date/time. Letter activity

has any of the standard SFU grade values. Calculated numeric activity is based on a

user specified formula t o calculate a numeric grade according to other course activities.

Calculated letter activity is based on the grade cutoff (e.g., A+ when the final numeric

grade is over 90) that are specified by the users to generate a letter grade for a numeric

activity.

• Activity has released/unreleased status such that the activity can be configured to be

unreleased when students grades are not releasable (e.g., only a part of the students

have an assignment grade).

• Activity can be visible/invisible to student.

4

CHAPTER 2. COURSE MANAGEMENT SYSTEM COMPONENTS 5

• Activity has grade summary statistics: average, minimum, maximum, median, stan-

dard deviation and a histogram showing grades distribution.

• Activity can be reordered.

• Instructor/TA view: full list of student information which can be searched and ordered.

• Student view: a summary of the course infoformation containing course metadata,

course activities, activity grades and activity statistics.

• Seamless integration with the Marking and Submission component such that instruc-

tor/TA can access the marking details and assignment submissions through the student

list.

• Student grades can be exported to or imported from the CSV format.

• Letter grades should be exportable to the format used in SIS.

• News item (or news feed) is created for a new mark.

• Course setup can be copied from semester to semester, including marking components

(see Section 2.2) and submission components (see Section 2.3).

2.2 Marking component

• Activity in the Grades component can be marked.

• Every markable assignment can have multiple marking component (e.g., validation of

code, readability of code, execution time of code, etc).

• Each marking component has a maximum mark (e.g., out of 5), title (e.g., validation

of code) and description (e.g., the submitted code passes all the test cases).

• Marking components can have ”common problems” associated with them. Thus,

Instructor/TA can identify ”common problems” with a comment and a mark penalty

(e.g., one test failure has mark penalty -1). When marking, these can be selected for

insertion into a marking component.

• When marking, instructor/TA can enter a mark and comment for a marking compo-

nent.

CHAPTER 2. COURSE MANAGEMENT SYSTEM COMPONENTS 6

• It should be able to attach a file to a marked assignment (e.g., to return the cor-

rected/commented code to the student).

• Marking should include late penalty.

• Course setup can be copied from semester to semester.

2.3 Submission component

• Activity in the Grades component can configure submission.

• Submission can have multiple submission components (e.g., archive submission, URL

submission or pdf submission, etc).

• Submission component type can be: text file, ZIP/TGZ/RAR archive files, URL, pdf,

code file.

• Every submission component has a size limit (e.g., maximum size of text file is 100kb).

• Submission component should be validated reasonably (e.g., submitted URL should

exist, code file has extension ”.java”). Some submission component validation can be

overridden by the student (e.g., student still want to submit an uncompilable code for

marking purpose).

• Multiple submissions of an assignment are allowed, and displays the most recent one.

• Student can submit based on the submission configuration.

• Submission reflects the due date and is flagged with extent of lateness.

• When marking a submission component, instructor/TA can take ownership. This is

used to ensure others don’t mark it while one person is already working on it. It

should be possible to override ownership if necessary (e.g., others can take ownership

away if they have a reason).

• Submission component can be flagged new/in-progress/done. Submission component

starts with new, then in-progress when it is taken, and done after it is marked or

explicitly set.

CHAPTER 2. COURSE MANAGEMENT SYSTEM COMPONENTS 7

• Automate testing of code file submission.

• News item (or news feed) is created for new submission.

2.4 Group Management component

• Students can form a group if the course activity is a group activity.

• Students can create a group, select group members and choose a group for approval.

All members of a group must approve the group membership if the group is created

by students. Instructor/TA created group does not need to be approved.

• Instructor/TA can assign students to groups.

• Marks can be associated with a group if it is group activity. Instructor/TA can still

mark individually.

• Submissions are associated with a group if it is group activity.

Chapter 3

Project Technologies and

Management

The goal of the project is to develop a functional system in one academic semester. This lim-

ited time frame, together with the team’s insufficient web development experience, narrows

down the technologies we can choose from.

3.1 Technologies

We use Python[3]+Django[1] as the server-side technologies. Django is a rapid application

web development framework that is based on the Python language. It fulfills the stringent

timeline requirement of the project. Django provides an ease-of-use framework to handle the

complex design nature of database-driven web application with the least programming effort.

Section 3.1.1 briefly describes the Django framework. We use HTML[10]+CSS[7]+Javascript[12]

as the client-side technologies. We use JQuery and its plugins as the Javascript library to

build the rich internet application interface. Using the JQuery library also help us to solve

compatibility issues which occur between different versions of a browser as well as among

different vendors of browsers. We also integrate the latest HTML5[11] technology (canvas

html tag) into the client-side.

8

CHAPTER 3. PROJECT TECHNOLOGIES AND MANAGEMENT 9

3.1.1 Django

Django is a Python web framework that encourages rapid development and clean design[1].

It emphasizes automating as much as possible and adheres to the Don’t Repeat Yourself

(DRY) principle. Developers focus on the implementation of business logic rather than

implementing the web framework. The following lists some the core functions in Django

which are most valuable to our project.

• The core Django framework offers an object-relational mapper which mediates between

data model (defined as Python class) and the relational database[9]. Developers usu-

ally do not need to deal with database queries. The Django database API is competent

enough to manipulate the database in most cases.

• An easy-to-configure request processing system which consists of a regular-expression

based URL dispatcher.

• A message framework that faciliates message delivery

• Automatic admin interface for people to manage the data.

• A template system to display server processed data into client-side.

• A light-weight, standalone web server for deployment and testing.

• Support for middleware classes which can intervene at various stages of request pro-

cessing and carry out custom functions, for example, authentication and authorization

middleware, session middleware.

• An interface to Python’s built-in unit test framework.

3.1.2 HTML5

HTML5 is the next major version of HTML specification[11]. It contains new elements to

facilitate the creation of rich internet application. For example, the canvas element can

be used to generate graphs, audio or video elements to embed media, scripting API to

implement drag and drop behaviour, etc. It reduces the need for proprietary rich internet

technologies such as Flash, Silverlight and JavaFX. However, the specification is still under

development and only a few of the HTML5 elements are supported by major browsers.

CHAPTER 3. PROJECT TECHNOLOGIES AND MANAGEMENT 10

At the moment, the only HTML5 element implemented in the project is canvas, which is

used to show the course activity histogram to users. This element is well supported by

the latest version of most major browsers (except IE): Firefox, Chrome, Opera and Safari.

Fortunately, there is a google Javascript library that enables the canvas support in IE.

3.1.3 JQuery

JQuery is a featured library that simplifies HTML document traversal, event handling,

animation and Ajax interaction for rapid web application[5]. We use JQuery for basic

HTML manipulation and JQuery plugins for advanced features. For example, we use the

DataTable plugin[4] for advanced table manipulations such as search, sort, pagination and

filter. We also use the JQuery UI[6] to build the highly interactive web application.

3.2 Project management

The team uses Scrum[13] as the project management tool. Greg Baker, the professor in

charge of the project, is the product owner and Scrum master. The project consists of one

orientation sprint (from Jan 5 to Jan 11), two major development sprints (one from Jan 12

to Mar 1, and the other from Mar 2 to Apr 5). After that there is a two week sprint to test

and validate the system so that it can be tested in the summer semester on a real course.

In the orientation sprint, the team learns Python programming and how to use the

Django framework to develop web applications. During this phase, the team developed an

advisor portal which keeps advising notes on students. The system allows the notes to be

shared among advisors.

In the two major development sprints, the team focuses on the system user requirements

and implements the system accordingly. The product owner (Greg Baker) cooperates with

some domain experts, who are the professors in SFUCS using the current course management

systems, to elicit the product backlog and utilize the Trac project management tool to

keep track of the backlog. I, as part of the development team, pick up tasks from the

product backlog and implement them. I am in charge of the Grades component of the

course management system. Greg Baker also plays the roles of code reviewer and technical

consultant and code developer.

In the final two week sprint, the team focuses on the validation and testing of the system

and leave the remaining user requirements in the backlog.

Chapter 4

System Design

4.1 MVC paradigm

Django provides well-defined architectures to design a web system. We adapt the MVC de-

sign paradigm implemented by Django. Thus, the code base of CMS shows a clear separation

between model, view and controller, as shown in Figure 4.1.

Figure 4.1: Code structure

The models.py file under the grades folder (the Grades component) defines the models

of Grades component. These models define the essential fields and behaviors of the data the

component is storing. The model is implemented using an object-relational mapper, thus

11

CHAPTER 4. SYSTEM DESIGN 12

every model is mapped to a database table. The controller which is called view in Django

(hereinafter I refer to controller to view in accordance with adapt the Django conventions)

is defined in the views.py file. These views are mapped by the URL dispatcher and are

called when the user requests the corresponding URL, for example:

url(r′^′ + COURSE SLUG +′ /$′,′ grades.views.course info′)

The above code snippet defines a URL mapping to a view function. The first part is

the regular expression of the URL (COURSE SLUG is a regular expression that represents a

unique string that can identify a course, e.g., 1101-cmpt-165-d1001). The second part is the

mapped view function that is defined in the views.py file under grades folder.

The view (of MVC) is implemented using Django’s template system. As can be seen in

Figure 4.2, the templates is placed in the templates folder.

4.2 Middleware

Figure 4.2: System middleware

1the course slug conforms to semester and course code defined by SFU

CHAPTER 4. SYSTEM DESIGN 13

Middleware is a framework of hooks into Django’s request/response processing. Each

middleware component is responsible for doing some specific function. In Figure 4.2, it

shows the five middlewares used by the CMS system. These middlewares are applied to the

request/response processing sequentially.

The CommonMiddleware add convenience to web development. It can append slash “/”

to the end of the request URL and the prepend WWW to the front of the URL. Both of

these options are meant to normalize URLs. The philosophy is that each URL should exist

in one, and only one, place. Technically a URL foo.com/bar is distinct from foo.com/bar/

- a search-engine indexer would treat them as separate URLs - so it is best practice to

normalize URLs.

The SessionMiddleware activates the session management of the system. The session

framework lets you store and retrieve arbitrary data on a per-site-visitor basis. It stores

data on the server side and abstracts the sending and receiving of cookies. Cookies contain

a session Id and not the data itself.

The MessageMiddleware provides full support for cookie- and session-based messaging.

It allows the system to temporarily store a message in one request and retrieve them for

display in a subsequent request (usually the next one). Every message is tagged with a level

to determine its severity and priority, e.g., info, success, warning or error.

The AuthenticationMiddleware handles user accounts, groups, permissions and cookie-

based user sessions. It maintains the user information in the backend and provide an

authentication framework. It also hooks the user information into the request object for

easy access.

The CASMiddleware is developed by our team to provide integration with the SFU CAS

authentication system. This middleware utilizes the AuthenticationMiddleware to handle

user accounts and permissions but uses the login service provided by CAS system to au-

thenticate the user.

4.3 Logging service

We have implemented a logging service to log user activity (e.g., instructor A creates As-

signment1 to cmpt165). We have defined a data model to store the log information into the

database and provide a simple user interface for the system administrator to retrieve the

log information.

Chapter 5

Overview of the Grades

Component

This chapter provides an overview of the Grades component and some of the core technical

implementations. Since I am only in charge of the grade component, I only elaborate the

technical implementation of Grades component and I leave other components out.

The Grades component mainly deals with the course activity management and student

grade manipulation. We have defined four activity types and two grade types. The activity

types are numeric activity, letter activity, calculated numeric activity and calculated letter

activity. The grade types are numeric grade and letter grade. These four activity types and

two grade types are mapped to the database model directly. Most of the functionalities in

the Grades component are built for these six models.

5.1 The data models

The system has defined several data model types that are used across all the components

and mapped to the database directly. These types include but are not limited to: Person,

Semester, CourseOffering (e.g., CMPT165 is offered in 2010 spring semester) and Member

(e.g., student A is a student in the CMPT165 CourseOffering). These data models hold gen-

eral course offering and student information that can be retrieved from other SFU systems

such as SIS for which the course offering information is maintained. Thus, the manipulation

of these data does not belong to the function scope of the CMS.

14

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 15

5.1.1 Activity type model

We define a base abstract activity type Activity for holding general activity information:

Figure 5.1: Activity models

The following fields are defined in the abstract activity type Activity:

• name: the activity name that is displayed. This field is unique within a course offering.

• short name: the activity short name for activity manipulation, e.g., when specify the

activity reference in the calculated numeric activity formula (see Section 5.2.6). This

field is unique within a course offering.

• slug: Auto generated field when the data model is saved to database. This is a

unique identifier within a course offering that is generated based on the short name.

It is mainly used in URL manipulation.

• status: activity status which can be released/unreleased/invisible. Instructor/TA

uses this attribute to control the display of activity information for a student and

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 16

to restrict student action on an activity. For example, student cannot submit any

assignment when the activity is released; student cannot view his/her grades when

the activity is unreleased; a student cannot see the activity when it is invisible, etc.

• due date: activity due date. Submission beyond the due date may have a penalty

applied.

• percent: how much this activity contributes towards the final grade.

• position: keep track of activity ordering in a course offering. Instructor/TA can

reorder an activity.

• group: specify whether this is a group activity. This will affect the layout and work

flow when the corresponding activity is manipulated.

• deleted: specify whether the activity is deleted.

• offering: the course offering reference, see Section 5.1.

Numeric activity type NumericActivity is inherited from Activity with an additional field:

• max grade: the maximum numeric grade in this activity.

Letter activity type LetterActivity is inherited from Activity without any additional field:

• formula: the formula for calculating the numeric grade. See Section 5.2.6.

Calculated letter type has yet to be implemented.

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 17

5.1.2 Grade type model

We define two Grade types as shown in Figure 5.2:

Figure 5.2: Grade models

Numeric grade type NumericGrade holds numeric grade information for a student in a

course numeric activity:

• activity: the numeric activity reference.

• member: the course member reference, see Section 5.1.

• value: the numeric grade value.

• flag: grade status which can be graded/no grade/calculated/dishonesty/excuse. This

is useful to specify additional information for a student grade, e.g., student who flouts

the academic policies is flagged dishonesty; grade generated from the calculated nu-

meric activity is flagged calculated (see Section 5.2.8).

Letter grade type LetterGrade holds the letter grade information for a student in a course

letter activity.

• activity: the numeric activity reference.

• member: the course member reference, see Section 5.1.

• letter grade: the letter grade which can be one of the standard SFU values.

• flag: grade status which can be graded/no grade/calculated/dishonesty/excuse. This

is useful to specify additional information for a student grade, for example, a student

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 18

who flouts the academic policies is flagged dishonesty; grade generated from the cal-

culated letter activity is flagged calculated (not implemented).

5.2 Core functionalities at instructor/TA side

5.2.1 Course view

Figure 5.3: Instructor’s landing view in a course

In Figure 5.3, Instructor/TA can see the course information and the full list of course

activities, including all four activity types. The course information is retrieved from the

CourseOffering data model, see Section 5.1. Each table row of the activities list contains the

primary information of a course activity. All the information can be mapped to the Activity

data model directly. The order column contains reorder button so that instructor/TA

can reorder the activity accordingly, see Section 5.2.7 for reordering activities. Links are

provided to add/view/mark/edit course activity, see Section 5.2.4 for adding/editing course

activity. The search and pagination functionalities of the list are enabled by JQuery plugin

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 19

(dataTable) which is a client side operation. This minimizes unnecessary server requests

and thus provides better user experience. On the top-right corner, there is an action box

containing the list of actions the instructor/TA can perform for the course. These actions

include an all-students-all-activities-grades view of the course, managing the course groups

(bridge to Group Management component), creating course messages (e.g., if an instructor

wants to deliver a message to the class) and copying the course setup from a previous course

that is taught by the instructor.

5.2.2 Activity view

Figure 5.4: Instructor/TA’s view in a course activity

By clicking an assignment link in the activities table as shown in Figure 5.3, the system

will redirect the user to a page showing detailed information on the course activity, as shown

in Figure 5.4. Instructor/TA can examine all the activity information on the top-left corner

of the page; user can also examine the full list of students with their primary information and

activity grade information. The student information is retrieved from two data models: 1)

Member (see Section 5.1) for ’Last name’, ’First name’, ’UserID’ and ’Stu #’; 2) grade model

(see Section 5.1.2) for ’Grade Status’ and ’Grade’. Instructor/TA can mark the student by

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 20

clicking on the link (bridge to Marking component) in the ’Grade’ column and examine

the student’s activity submission through the link (bridge to Submission component) in

the last column. Instructor/TA can also change student’s grade status (bridge to marking

component) through the ’Grade Status’ column. These changes are reflected as news items

once the activity is released, and thus, the student is notified with the updated grade and

grade status. Figure 5.5 shows the news feeds that are displayed in the student’s landing

page.

Figure 5.5: News feeds

On the top-right corner of Figure 5.4, there is an action box containing the list of actions

the instructor/TA can perform for the activity. Instructor/TA can edit the activity (see

Section 5.2.4), view the activity statistics (e.g., max grade, min grade, stddev, histogram,

etc), configure the submission component (bridge to Submission component) and marking

component (bridge to Marking component) and import/export the list of students’ grades

as CSV, see Section 5.2.9.

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 21

5.2.3 Activity group view

Figure 5.6: Instructor/TA’s group view in a group course activity

Instructor/TA can view the students as groups if it is a group activity, as shown in

Figure 5.6. Instructor/TA can mark the activity as a group and examine the group’s sub-

mission. The group information in this page is retrieved from the data model in Group

Management component which is not discussed in this paper.

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 22

5.2.4 Adding/editing an activity

Figure 5.7: Adding/editing activity

Forms are provided to add/edit a course activity. At the moment, three types of activity

can be added/edited, namely, numeric activity, letter activity, calculated numeric activity.

As can be seen in Figure 5.7, all form fields correspond to the activity data model with the

required field indicated by a red asterisk. The Date picker in the “Date” field is implemented

using JQuery UI. Form validations are also implemented with proper error messages shown.

In the Django backend, the form is implemented using Django Form[2]. Django Form

provides handy form manipulations of common form behaviours. It provides data field

conversion (e.g., transforming string to object, object to string), data field validations and

form HTML generation.

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 23

Figure 5.8: Adding/editing calculated numeric activity

5.2.5 Adding/Editing a calculated numeric activity

Figure 5.8 shows the form page of adding/editing a calculated numeric activity. When

instructor/TA specifies the formula field, he/she can refer to the applicable activities in the

drop down list and use the formula tester to test the integrity of the formula. In the formula

tester, instructor/TA can see the full list of applicable numeric activities. He/she can input

testing values for each of them and input the formula to evaluate the result. This formula

tester helps instructor/TA to ensure the correctness of the formula so that they do not need

to use the real student data to experiment with the result. The formula field is a plain

text that can be evaluated by a formula parser (see Section 5.2.6) to produce the evaluated

result.

5.2.6 The formula parser

The formula parser accepts name and short name field (see Section 5.1.1) of the activity

model and exposes the value, percent and max grade field through the activity reference in

the formula plain text (e.g., [A1], [A1.percent], [A1.max grade]). It accepts real number;

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 24

operators: +, −, ∗ and /; functions: SUM , AV G, MAX, MIN , BEST ; and sign operator.

For example, we can specify the following as the formula: [A1] + [A2] ∗ 2.

The formula parser is implemented using python’s pyparsing module1. Pyparsing’s class

library provides a set of classes for building up a parser from individual expression elements,

up to complex, variable-syntax expressions. For example, the pyparsing grammar of an IP

address can be expressed as:

ipF ield = Word(nums,max = 3)
ipAddr = Combine(ipF ield + “.” + ipF ield + “.” + ipF ield + “.” + ipF ield)

The ipF ield is a Word class denoting a 3-digit number field. The ipAddr is a Combine

class denoting the combination of four ipF ield(s) intercepted with “.”

Once the grammars of the formula are specified, the formula parser can parse the for-

mula plain text into a well-defined data structure that can be evaluated easily. The following

examples explain the data structure and how it is used by the formula parser to evaluate

the result.

Example 1

Formula: [A1]
Data structure after parsing: (′col′, set([′A1′]),′A1′)

The first element indicates the type of the evaluation; ′col′ means an activity reference.

Five evaluation types have been defined: 1) ′col′ for activity reference; 2) ′sign′ for sign

evaluation; 3) ′num′ for number evaluation; 4) ′func′ for function evaluation 5) ′expr′ for

expression containing operators.

′col′ type has three elements in the data structure. The second element indicates the full

set of activity references used in the formula; in the example, ′A1′ is the only one and thus

the set contains only ′A1′. The third element is the string representation of the activity

reference, ′A1′. Thus, the formula parser can evaluate the result based on the value field of

the activity model.

1pyparing is an approach to creating and executing simple grammars, http://pyparsing.wikispaces.
com/

http://pyparsing.wikispaces.com/
http://pyparsing.wikispaces.com/

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 25

Example 2

Formula: [A1] + 1
Data structure after parsing: (′expr′, set([′A1′]), (′col′, set([′A1′]),′A1′),′ +′, (′num′, set([]), 1))

The formula belongs to ′expr′ type because it has an operator ′+′. The activity reference

set (second element) contains only ′A1′. However, there are three more elements after the

first two elements which are different from Example 1. This is a distinction between ′expr′

and other types.

The parser separates the formula into two sub-formulas based on the first operator.

Thus, the two sub-formulas are: [A1] and 1 respectively. Their corresponding parsed data

structures are: (′col′, set([′A1′]),′A1′) and (′num′, set([]), 1).

Therefore, the parsed data structure of the original formula has to contain these two sub

data structures plus the operator. The formula parser can examine the data structure and

recursively evaluate its sub data structures to produce the final result.

5.2.7 Reordering the activity position

Activity positioning is implemented in order to display the right ordering of activities. In

Figure 5.3, the order column enables instructor/TA to reorder the activity position. This

function has been implemented in both the Ajax way and the non-Ajax way to provide

the best user experience. In the Ajax way, instructor/TA can smoothly reorder activities

without refreshing the page. However, in the non-Ajax way, instructor/TA has to wait for

the page to refresh in order to reorder an activity. The non-Ajax way acts as a backup

solution when Javascript malfunctions, not supported or is disabled in the browser. In the

Django backend, the reordering is done by swapping the position field (see section 5.1.1) of

the two Activity models.

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 26

5.2.8 Calculating the numeric grade

Figure 5.9: Instructor/TA’s view in a calculated numeric activity

Figure 5.9 is the instructor/TA’s view in a calculated numeric activity. The student

information is retrieved from two data models: 1) Member for ’Last name’, ’First name’,

’UserID’ and ’Stu #’; 2) grade model for ’Grade Status’ and ’Grade’. Functions are pro-

vided for instructor/TA to calculate the student grade based on the formula specified in the

calculated numeric activity. Two ways of calculation are provided: calculation of all stu-

dents and calculation of an individual student. The calculation of an individual student is

implemented using Ajax technologies to provide the best user experience (no page refresh).

Error handling is implemented for the Ajax request. A proper error message will be

displayed within the field that triggers the calculation. A non Ajax-way to calculate an

individual student grade is also implemented in case Javascript malfunctions, disabled or

not supported by the browsers. Thus, it ensures the universal accessibility from different

devices while enabling the advance features for those devices that support the technologies.

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 27

5.2.9 Marking student

Figure 5.10: Marking student

In Figure 5.4, Instructor/TA can mark an individual student through the link provided

in the Grade column. It will redirect instructor/TA to a page containing forms to mark

a student based on individual marking components. Additional marking information such

as late penalty can be added through that page. By clicking the ’Mark all’ action link

in Figure 5.4, the instructor/TA can mark all the students in a single page, as shown in

Figure 5.10. However, marking in this way will not associate the information to any marking

component defined in the activity. The instructor/TA can also import the students’ grades

from a CSV file. The CSV file is manipulated through Python’s csv module which provides

handy functions to write and read a CSV file.

5.3 Core functionalities in student side

The student side of the CMS has a simpler user interface and less functionality compared

with the instructor/TA side. Students can examine the course information and their grade

in each course activity; students can manage their course group, submit assignments and

view marking details.

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 28

5.3.1 Course view

Figure 5.11: Student’s landing view in a course

In Figure 5.11, students can examine the general course information on the top-left

corner. This information is retrieved from the CourseOffering data model. Students

can also view the list of course activities and the corresponding grade information. The

information is retrieved from two data model types; they are Activity type and Grade type

respectively. Students cannot examine the grade information when the activity is unreleased

and cannot examine the activity information when the activity is invisible. The activity

order is displayed according to the activity order management in the instructor/TA side.

Links are provided for every activity so that students can examine the details associated

with them. Group management is also provided in the action box on the top-right corner

if it is a group activity so that students can form their group, invite students to join the

group and perform actions on behalf of the group (e.g., group submission).

CHAPTER 5. OVERVIEW OF THE GRADES COMPONENT 29

Figure 5.12: Student’s course activity view

By clicking the activity link in Figure 5.11, students is redirected to a new page showing

the detailed information of the activity, as shown in Figure 5.12. The information in the

first table is retrieved from the Activity model and the Grade model. The information of

the summary statistics and histogram is generated in the Django backend using the grades

information which is retrieved from the Grade model. The histogram is generated using

HTML5 canvas element. This is implemented by generating an html table with all the

grade range information and use a JQuery plugin to transform it into the HTML5 canvas.

Students can also look at their marking summary and submit their assignment.

Chapter 6

Overview of Marking Component

This chapter provides an overview of the Marking component from the user perspective. The

Marking component mainly deals with the marking service for a numeric graded activity.

Typical use cases will be: Instructor/TA specifies the marking components for an activity,

then marks the students based on the marking configurations. After that, a student can see

the marking summary.

6.1 Core functionalities at instructor/TA side

6.1.1 Configuring marking component

Figure 6.1: Instruct/TA’ view on configuring marking components

30

CHAPTER 6. OVERVIEW OF MARKING COMPONENT 31

In Figure 6.1, instructor/TA specifies all the marking components for the activity and

submits. Instructor/TA can also reorder the component position through ’Edit Compo-

nents Order’ link above the table. This is similar to the activity reordering. After that,

instructor/TA is ready to mark an activity.

6.1.2 Marking student

Figure 6.2: Instruct/TA’ view on marking components

In Figure 6.2, instructor/TA marks the student based on the marking components;

additional information can be given such as late penalty, mark adjustment, comment and

file attachment (e.g., instructor/TA may want to send back the commented code assignment

CHAPTER 6. OVERVIEW OF MARKING COMPONENT 32

to the student). After instructor/TA submit the marking, the grade change will be displayed

immediately in the course activity page. If the activity is a group activity, this step can be

applied to group marking as well. By marking on the group, every student in the group

receives the same grade.

6.1.3 Examining marking summary

Figure 6.3: Instruct/TA’ view on marking summary

Instructor/TA can examine the student’s marking summary, see Figure 6.3 which shows

the marks on every marking component and the additional information associated with the

activity. Actions are also provided for instructor/TA to remark the assignment or to view

CHAPTER 6. OVERVIEW OF MARKING COMPONENT 33

the marking history.

6.2 Core functionalities at student side

6.2.1 Examining marking summary

Students can view the marking summary through the course activity page, see Figure 5.12.

The marking summary information is displayed in the same way as for the instructor/TA

side, but without the ability to mark and view the history.

Chapter 7

Overview of the Submission

Component

This chapter provides an overview of the Submission component from the user perspec-

tive. Submission component provides services for instructor/TA to specify submission com-

ponents for an activity and provides services to manipulate the submission components.

Typical use cases will be: instructor/TA specifies the submission components of an activ-

ity; students submit their assignments; after the activity is due, instructor/TA examines

student’s submissions and marks based on the submissions.

7.1 Core functionalities at instructor/TA side

7.1.1 Configuring submission component

Instructor/TA can specifies the submission components for the activity, see Figure 7.1. The

component types can be URL, archive file, pdf or code file. Instructor/TA can also reorder

the component position. This is similar to the activity ordering.

7.1.2 Examining student’s submission

Instructor/TA can examine the student’s submission, see Figure 7.2. Instructor/TA can

view the submission information (e.g., last submission date, last submitter and the group

name if the activity is a group activity) and can download the submission for marking

purpose. In the action box, marking functionalities are provided to mark student directly

34

CHAPTER 7. OVERVIEW OF THE SUBMISSION COMPONENT 35

Figure 7.1: Instruct/TA’ view on configuring submission components

Figure 7.2: Instruct/TA’ view on examining student’s submission

CHAPTER 7. OVERVIEW OF THE SUBMISSION COMPONENT 36

from this page. Instructor/TA can view the submission history and can download all the

submission as a single archive file.

7.2 Core functionalities at student side

7.2.1 Submitting activity components

Figure 7.3: Student’s view on examining activity submissions

Student can submit the activity components through the course activity page, see Fig-

ure 5.12. Student will first see the submission information of the activity, as shown in

Figure 7.2. Student can submit the activity components by clicking on the ’New Submis-

sion’ action in the action box. Then, student will be redirected to a page to submit the

components, see Figure 7.3. If the activity is a group activity, all submission actions are

done on behalf of the group.

CHAPTER 7. OVERVIEW OF THE SUBMISSION COMPONENT 37

Figure 7.4: Student’s view on submitting activity components

Chapter 8

Overview of the Group

Management Component

This chapter provides an overview of the Group Management component from the user

perspective. Group Management component provides services for both instructor/TA and

student to manage student group. Typical use cases will be: a student creates a group for

the course activity; the student invites other students to join the group; these other students

either confirm or reject the invitation to join the group. Once the student group is formed,

only instructor/TA has the authority to switch students or remove students from group.

8.1 Core functionalities at instructor/TA side

8.1.1 Managing student group

Instructor/TA has the full authorization to manage student groups, see Figure 8.1. Instruc-

tor/TA can see all the groups for all the activities in a course and the list of students not

in a group. These groups can belong to multiple activities. Instructor/TA can change the

name of the group, remove students from the group, assignment students to a group and

form a new group, see Figure 8.2.

38

CHAPTER 8. OVERVIEW OF THE GROUP MANAGEMENT COMPONENT 39

Figure 8.1: Instruct/TA’ view on managing student group

Figure 8.2: Instruct/TA’ view on creating group

CHAPTER 8. OVERVIEW OF THE GROUP MANAGEMENT COMPONENT 40

Figure 8.3: Student’s view on managing group

Figure 8.4: Student’s view on creating group

CHAPTER 8. OVERVIEW OF THE GROUP MANAGEMENT COMPONENT 41

8.2 Core functionalities at student side

8.2.1 Managing group

Student can examine the groups for a course when he/she is one of the group members, see

Figure 8.3. He/she can invite other students to join the group. In this case, the invited

student has to accept the invitation in order to join the group. Students can also create a

new group for the course, see Figure 8.4. He/she specifies which activity this group belongs

to and specifies whether the group will be associated with the newly created activity.

Chapter 9

Conclusion and Future

Improvement

We have implemented most of the functionalities of the four major components in the CMS.

By examining the problems of the current systems used by SFUCS, we have defined the

functions domain of the CMS. The principal advantage that the CMS has over the current

systems is CMS provides a central access point to manage courses. All the course manage-

ment information sits within a system sharing the same database. Users no longer manually

relate an assignment submission with the student grade. Users now have the choice not to

spend hours trying to figure out how WebCT works. Instead, they can use CMS which has

the just-enough functionalities. We emphasize the simple-is-beautiful principal throughout

the project development; we promise every function is straightforward and is simple to use.

The user interface is intuitive and eye-catching and users can efficiently perform the func-

tions they anticipate. We have also implemented some miscellaneous functions to facilitate

course management, such as group management, news feed and calculated numeric activity.

From the developer perspective, we have developed a system with a very clean code

base. It is attributed to the design pattern that Python+Django emphasize on. We also

insist on the Don’t Repeat Yourself principle that we maximize the use of utilities module

provided by the framework as well as the software communities. At the front end, we bear

in mind the browsers compatibility and functional gap between different vendors. We have

chosen technologies that work for different vendors of a browser as well as different versions

of the same browser. CMS is tested against all major browsers.

42

CHAPTER 9. CONCLUSION AND FUTURE IMPROVEMENT 43

However, this project is still under development. The project scope, technical implemen-

tation as well as the layout of the system may be subject to change. Future improvement will

also be advised by the users when the system is released for SFUCS. However, some features

that are not in the current project scope have been considered as future improvement such

as course offering planning. So far, the course offering planning has been done manually.

There is no central database system handling this information. Instructors and staff need to

convey this information through email or manually. Then, they manually resolve the course

planning conflicts and issues and post it in the SFUCS website.

Bibliography

[1] Django Software Foundation. Django. http://www.djangoproject.com/.

[2] Django Software Foundation. Working with forms.
http://docs.djangoproject.com/en/1.1/topics/forms/.

[3] Python Software Foundation. Python programming language.
http://www.python.org/.

[4] Allan Jardine. Datatables (table plug-in for jquery). http://www.datatables.net/.

[5] JQuery Team. Jquery. http://jquery.com/.

[6] JQuery UI Team. Jquery ui. http://jqueryui.com/.

[7] Wikipedia. Cascading style sheets. http://en.wikipedia.org/wiki/Cascading Style Sheets.

[8] Wikipedia. Comma-separated values. http://en.wikipedia.org/wiki/Comma-
separated values.

[9] Wikipedia. Django (web framework). http://en.wikipedia.org/wiki/Django (web framework).

[10] Wikipedia. Html. http://en.wikipedia.org/wiki/HTML.

[11] Wikipedia. Html5. http://en.wikipedia.org/wiki/HTML5.

[12] Wikipedia. Javascript. http://en.wikipedia.org/wiki/JavaScript.

[13] Wikipedia. Scrum (development). http://en.wikipedia.org/wiki/Scrum (development).

44

	Approval
	Abstract
	Contents
	List of Figures
	Introduction
	Old system
	GradeBook
	Assignment submission web service
	WebCT
	Marking service

	New system

	Course Management System Components
	Grades component
	Marking component
	Submission component
	Group Management component

	Project Technologies and Management
	Technologies
	Django
	HTML5
	JQuery

	Project management

	System Design
	MVC paradigm
	Middleware
	Logging service

	Overview of the Grades Component
	The data models
	Activity type model
	Grade type model

	Core functionalities at instructor/TA side
	Course view
	Activity view
	Activity group view
	Adding/editing an activity
	Adding/Editing a calculated numeric activity
	The formula parser
	Reordering the activity position
	Calculating the numeric grade
	Marking student

	Core functionalities in student side
	Course view

	Overview of Marking Component
	Core functionalities at instructor/TA side
	Configuring marking component
	Marking student
	Examining marking summary

	Core functionalities at student side
	Examining marking summary

	Overview of the Submission Component
	Core functionalities at instructor/TA side
	Configuring submission component
	Examining student's submission

	Core functionalities at student side
	Submitting activity components

	Overview of the Group Management Component
	Core functionalities at instructor/TA side
	Managing student group

	Core functionalities at student side
	Managing group

	Conclusion and Future Improvement
	Bibliography

