
EASYLIFE - ONLINE COMMUNITY TRADING SYSTEM:

REQUIREMENTS ANALYSIS,PROTOTYPE

DESIGN,DATABASE DESIGN AND SEARCH ENGINE

IMPLEMENTATION

by

Weiwei Chen

a Report submitted in partial fulfillment

of the requirements for the SFU-ZU dual degree of

Bachelor of Science

in the School of Computing Science

Simon Fraser University

and

the College of Computer Science and Technology

Zhejiang University

c© Weiwei Chen 2010

SIMON FRASER UNIVERSITY AND ZHEJIANG UNIVERSITY

Spring 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Weiwei Chen

Degree: Bachelor of Science

Title of Report: EasyLife - Online Community Trading System: Requirements

Analysis,Prototype Design,Database Design and Search En-

gine Implementation

Examining Committee:

Dr. Qianping Gu, Supervisor

Dr. Ramesh Krishnamurti, SFU Examiner

Date Approved:

ii

Abstract

Nowadays, there are many trading service web sites, more and more people choose to do

their transactions online. However, on the current web sites, sellers cannot customize their

web pages to make them more attractive. In order to solve this problem, in this document,

we describe the development process of a new web site named EasyLife.

After the requirement analysis, we achieved the basic functions of a business web site,

such as the page design, database building and search engine. In additional to these, we

implemented a smart page design tool inside our web site. By using this tool, users can

create web pages by using different templates and widgets.

As a result, EasyLife can become a successful business web site and get more attention

from host of users, especially users who want to build small online shops of their own.

iii

Acknowledgments

I am writing these acknowledgments to express my gratitude to all the people who gave me

help and support. Without them, I could not have finished my project and the technical

report.

I would like to first thank my supervisor, Qianping Gu, Professor of SFU Computing

Science, who gave me a lot of guidance and suggestions about the project design and the

document production.

My partner, Kefu Zhao, is a responsible and creative talent. We worked together to

make our idea become a real product. He could always give me great advice when I was

trapped by some problem.

Edward Chin, one of my best friends, dedicated his own time to help me edit my report,

and make it as perfect as he can. I want to express my deepest gratitude to him and praise

his outstanding writing skill.

SFU Computing Science MSc student, Yan Tan, delivered his experience in data retrieval

and graphic interface design when I was implementing the search engine.

At last, I will give my thankful to all the following people: Jieying Li, Beijing Mu, Vito

Pun and Darren Zhao. They tried their best to support me; without them, I would not

have the strength to finish my project.

iv

Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Tables ix

List of Figures x

List of Programs xi

Preface xii

I Overview 1

1 Introduction 2

1.1 Background . 2

1.2 Analysis of the existing online trade websites 2

1.3 Introduction of EasyLife . 4

1.3.1 Overview of EasyLife . 4

1.3.2 Target users . 4

2 Preliminaries 5

2.1 Technologies . 5

v

2.1.1 Technologies used in requirement analysis 5

2.1.2 Technologies used in interface prototypes design 5

2.1.3 Technologies used in database design 5

2.1.4 Technologies used in search engine implementation 6

2.2 Requirements of the developing environment 6

2.2.1 Hardware requirements . 6

2.2.2 Software requirements . 6

2.3 Knowledge preparation . 7

II Requirements Analysis 8

3 UML 9

3.1 Introduction of UML . 9

3.2 Reasons for using UML . 10

3.3 The usage of UML in EasyLife . 10

3.4 UML Model building in Microsoft Office Visio 11

4 User definition 13

4.1 User classes . 13

4.2 Visitors . 14

4.3 Individual users . 15

4.4 VIP/Business users . 16

4.5 Use cases . 18

III Interface Design 21

5 Adobe Fireworks 22

5.1 Introduction of FW . 22

5.2 Reasons of using Adobe FW . 22

5.3 The usage of Adobe FireWorks in EasyLife 23

6 Interface prototypes design 24

6.1 Home page . 24

6.2 Design page . 25

vi

6.3 Templates . 27

6.3.1 Grocery . 27

6.3.2 Restaurant . 28

6.3.3 Personal sale . 30

6.4 Submitting page . 30

IV Database Design 32

7 MySQL 33

7.1 Introduction of MySQL . 33

7.2 The reason of using MySQL . 33

7.3 The usage of MySQL in EasyLife . 35

8 Database design and implementation in MySQL 36

8.1 Data specification . 36

8.2 Data structure . 37

8.2.1 Overview of Entity-Relationship Diagram 37

8.2.2 ERD of EasyLife . 38

8.3 Database implementation in MySQL . 38

8.3.1 Two ways of database implementation in MySQL 38

8.3.2 Connect to the database server . 39

8.3.3 Choose a database or create a new database 39

8.3.4 Create table . 40

8.3.5 Load data into table . 41

V Search Engine Implementation 42

9 Overview of website search engines and Apache Lucene 43

9.1 Three methods of putting a search engine in a website 43

9.1.1 Installing a search engine library . 43

9.1.2 “Using a free or commercial third party hosted search engine service” 44

9.1.3 “Using major search engines” . 45

9.1.4 Our choice . 45

vii

9.2 Overview of Apache Lucene . 45

9.2.1 Overview . 45

9.2.2 Features . 45

9.3 The process of search engine building with Lucene 47

10 Implementation of search engine in Apache Lucene 49

10.1 Preparation . 49

10.2 Database connection . 50

10.3 Index building . 50

10.4 Query parsing . 51

10.5 Searching . 51

10.6 Graphic interfaces . 52

VI Conclusion 54

A Source code of searching engine implementation 57

A.1 IndexManager.java . 57

A.2 IndexManager.java . 61

A.3 SearchResult.java . 64

A.4 index.jsp . 66

A.5 layout.css . 70

A.6 searchResult.jsp . 72

A.7 resultlayout.css . 74

Bibliography 75

Index 77

viii

List of Tables

8.1 Data table User . 36

8.2 Data table Page . 37

ix

List of Figures

3.1 Use case diagram of a restaurant . 11

4.1 User classes of EasyLife . 13

4.2 Use case diagram visitor . 14

4.3 Use case diagram individual user . 15

4.4 Use case diagram VIP/business user . 17

6.1 Home page prototype . 25

6.2 Design page prototype . 26

6.3 Template grocery homepage prototype . 27

6.4 Template grocery production page prototype 28

6.5 Template restaurant home page prototype . 29

6.6 Template restaurant Manu page prototype . 29

6.7 Template Personalsale page prototype . 30

6.8 Template submit page prototype . 31

8.1 ERD of EasyLife . 38

8.2 Screenshot MySQL connect to the sever . 39

8.3 Screenshot MySQL choose database . 40

8.4 Screenshot MySQL creat table . 40

8.5 Screenshot MySQL load data . 41

10.1 Screen shot of input page . 52

10.2 Screen shot of output page . 52

x

List of Programs

10.1 Source code of database connection . 50

10.2 Source code of index building . 50

10.3 Source code of query parsing . 51

10.4 Source code of searching . 51

A.1 IndexManager.java . 61

A.2 SearchManager.java . 64

A.3 SearchResult.java . 66

A.4 index.jsp . 70

A.5 layout.css . 72

A.6 searchResult.jsp . 74

A.7 resultlayout.css . 74

xi

Preface

This document, combined with Kefu Zhao’s capstone project report1, aims to describe the

procedure of a website development for people who have a certain level of computing science

background, especially for those who are interested in designing and implementing their own

website.

Unlike some computing science textbooks which only introduce the knowledge with

many small examples, we are trying to teach readers the technology through describing the

procedure of a website development during our document, so that they can understand how

to produce a website from requirement analysis, design, to implementation. After that, they

will know the basic process of software engineering.

In order to deliver the necessary knowledge to readers, before describing each developing

step of the website, we will the technology first.

This document includes six main parts:

1. Part I Introduction(Chapter 1) and preliminaries(Chapter 2).

2. Part II Requirement analysis (Chapters 3 and 4). This part outlines the process of

the software requirement analysis, especially how to use the UML model to define

different user classes and design use cases.

3. Part III Prototype design (Chapters 5 and 6). This part outlines the prototype design

of different pages in EasyLife by using Adobe Fireworks.

4. Part IV Database design (Chapters 7 and 8). This part outlines the database design

and implementation of EasyLife in MySQL.

1Please refer to Kefu Zhao’s capstone project report for more details[17]

xii

5. Part V Search engine implementation (Chapters 9 and 10). This part outlines the

background for data searching, the algorithm in Apache Lucene, and the implemen-

tation process of a search engine by using Lucene.

6. Part VI Conclusion of the whole report.

Also, all the source codes used in the search engine implementation are listed in the

appendix for users who want to create a mini search engine themselves.

As mentioned before, this document only describes part of the developing process of

EasyLife(Requirement Analysis, prototype design, database design and search engine imple-

mentation). Readers who want to get the whole picture and to produce a website themselves,

are advised to also refer to KefuZhao’s capstone project report[17].

In addition, the technology introduction chapters only have brief descriptions. People

who want to learn more about the technology and apply it into actual operation, should

read the detailed manuals listed in the bibliography.

xiii

Part I

Overview

1

Chapter 1

Introduction

1.1 Background

On 25 December 1990, Sir Tim Berner-Lee, a computer scientist at MIT, realized the first

successful communication between a HTTP client and a server via the internet[7]. During

the past 20 years, our lives have been transformed due to the development of Information

Technology (IT).

In 1995, Craig Newmark, a graduate of Case Western Reserve University, began an email

distribution service at his residential place in the San Francisco Bay Area[1]. The service

became a web-based service in 1996, and was incorporated as a private for-profit company

in 1999[1]. After 15 years of development, the company expanded into approximately 700

cities in 70 different countries[1]. His website, also known as “Craigslist”, has become one of

the most popular centralized network of online communities, featuring free online classified

advertisements .

Online trades and advertisements are now an indispensable part of everyday life. In

these online trades and advertisements, people can search products or services according to

interests. They can also contact the suppliers via the contact information on the web pages,

or complete the whole transaction process online.

1.2 Analysis of the existing online trade websites

There are several kinds of online trade websites today. They all have their own advantages

and disadvantages:

2

CHAPTER 1. INTRODUCTION 3

• Online auction websites

A typical example of an online auction website is eBay. The majority of the sales in

an online-auction website are in a set-time auction format. The seller can post the

product or service on the website by some specified bidding method: for example,

eBay uses proxy bidding. The winning bidder will get the product or service.

It supplies individual users a platform on which to sell their products and services,

and maximizes the benefit for both the seller and buyer. However, the integrity of

the trade is a serious problem. The website is not responsible for the quality of

the products, and legality issues during the transaction and payment process. For

example, the product the buyer gets maybe different from what was described on the

website; however, the website is not responsible for this. Another disadvantage is that

all the products listing pages on the website look identical. Sellers cannot customize

their own page or open an online shop inside.

• Online retailers

A typical example of an online retailer is Amazon.com. As the name suggests, an online

retailer can be viewed as a virtual store. On these websites, only the owners have the

right to post and sell products. The customers can also choose to buy the products

they like and pay a price set by the website. Online retailers avoid integrity problems

on the online-auction websites, but the rights of individual sellers are compromised.

• Online classified advertising websites

A typical example of an online classified advertising website is Craigslist. An online

classified advertising website is mostly an online website for individuals to sell their

personal belongings (i.e., used goods, house renting and other services). The adver-

tising page is usually text-only and may consist of a short description of the product

with the necessary contact information.

Individuals can post their advertisements online. To some extent, online classified

advertising websites also avoid the integrity problems since the website itself does

not supply the order and payment service. However, the classified advertisements are

normally oversimplified; it cannot attract commercial corporations who want to make

many online transactions.

CHAPTER 1. INTRODUCTION 4

1.3 Introduction of EasyLife

From the comparisons in the last section, we find that each of the existing online trading

websites has its own advantages and disadvantages. One of the common disadvantages is

that the sellers cannot design and customize their webpages. To overcome this problem, the

idea of creating a new site called EasyLife is proposed.

1.3.1 Overview of EasyLife

As we mentioned, EasyLife is an online trading website. It aims at producing a simple

webpage design tool - EasyWeb. This tool allows users to design their own pages by dragging

the templates or widgets into the canvas from the tool bar. After finishing the design, users

can obtain a URL and publish the webpage inside EasyLife.

Essentially, EasyLife is an online trade information centre which includes its own web

page design tool. By using EasyLife, all individual sellers or companies can create and

post their sub webpages or sub websites inside EasyLife. The buyers can also search the

pages they need in EasyLife to obtain information, or contact the seller to complete the

transactions.

1.3.2 Target users

The target users of EasyLife include:

• People who want to retrieve information.

• People who don’t have extensive web development experience but want to sell stuff

online.

• Companies who want to build simple websites but do not want to turn to IT consulting

companies.

Chapter 2

Preliminaries

2.1 Technologies

2.1.1 Technologies used in requirement analysis

During the software requirements analysis phase, we will use Unified Modeling Language

(UML)[9] as the main tool to specify user definitions.

UML is a standardized modeling language which is popularly used in software engineer-

ing. Details about UML will be outlined in Chapter 3. In addition, Windows Office Visio

2007 will be used to draw UML diagrams.

2.1.2 Technologies used in interface prototypes design

During the interface prototypes design phase, we will use Adobe Fireworks CS4 (FW CS4)[5]

as the main tool to design the prototype of all pages in EasyLife.

Adobe Fireworks (FW), is a bitmap and vector graphic editor which is popularly used

to quickly design the prototype of an interface or even the whole website. Details about

FW will be outlined in Chapter 5.

2.1.3 Technologies used in database design

During the database design phase, we will use MySQL[13] as the main tool to design the

data tables and to specify their relationships.

MySQL is a relational database management system which is popularly used to design a

database and to implement data mining. Details about MySQL will be outlined in Chapter

5

CHAPTER 2. PRELIMINARIES 6

7.

2.1.4 Technologies used in search engine implementation

During the Search Engine Implementation phase, we will use Apache Lucene[6] as the source

library to build the search engine in EasyLife.

Apache Lucene is an open source information retrieval library which is built in Java and

used to implement the search engine for websites. Details about Apache Lucene will be

outlined in Chapter 9.

2.2 Requirements of the developing environment

The requirement of the developing environment of EasyLife includes:

2.2.1 Hardware requirements

• Processor: 600 MHz Pentium III-class processor or higher

• RAM: 1 Gigabytes or larger

• Disk space: At least 10 GB free space for storage and software installation.

• Display: Super VGA (1024x768) or higher resolution display with 256 colors

• Mouse: Microsoft mouse or compatible pointing device

2.2.2 Software requirements

• Operating system: Windows 2000 or higher

• Application software:

– Microsoft Office 2003 or higher (Word, Excel, Visio)

– Adobe Suite CS3 or higher

– MySQL 1.4 or higher

– Apache Lucene 2.3 or higher

– MyEclipse 7.5 or higher

CHAPTER 2. PRELIMINARIES 7

2.3 Knowledge preparation

The readers should have the basic knowledge of the following technologies before reading

this document:

• Software engineering: readers should already know what software engineering is, and

some basic concepts of software engineering.

• Interactive arts technology: readers should have some basic interface design experience

and knowledge.

• SQL and database: readers should have some basic knowledge of SQL and some

database knowledge.

• Java: readers should have some experience of Java programming.

• HTML, JSP and CSS: Users should have some experience of graphic interface design

with HTML, JSP and CSS.

Part II

Requirements Analysis

8

Chapter 3

UML

3.1 Introduction of UML

Unified Modeling Language (UML), is a standardized modeling language in software engineering[9].

It can be used during the process of object-oriented software engineering, and gives a stan-

dard and straightforward way of describing the software architecture, user interactions, the

running process and the developing cycle.

UML 2.2,the latest version of UML, has 14 types of diagrams in two categories: Structure

Diagrams and Behavior Diagrams.

Structure diagrams are used to describe the structure information of systems and tell

readers what components must be in the system and the relationships between them. There

are seven types of structure diagrams in UML: Class diagram, Component diagram, Compos-

ite structure diagram, Deployment diagram, Object diagram, Package diagram and Profile

diagram[9].

Behavior diagrams are used to describe the behavior information of systems and tell

readers what actions will occur in the system and the sequence of different functions. There

are also seven types of behavior diagrams in UML: Activity diagram, State machine dia-

gram, Use case diagram, Communication diagram, Interaction overview diagram, Sequence

diagram and Timing diagrams[9].

9

CHAPTER 3. UML 10

3.2 Reasons for using UML

Though some people believe that all the steps during the requirements analysis phase are not

important, experienced software engineers can provide many examples of failures caused by

poor preparation. During the analysis and discussion phases of the project, UML provides

one of the best ways of communicating with other teammates, as well as customers who do

not have enough professional technology background.

UML is not a development tool, but is useful for developers to analyze and make de-

cisions prior to development. During software engineering, UML diagrams are important

support tools wisely used by project managers as blueprints to analyze requirements, make

developing plans, control processes, communicate with customers, and release products.

In addition, as an internationally recognized modeling language, UML has many ad-

vantages compared with other modeling languages; some of the advantages are visualized

elements and easy to understand descriptions. This is why UML was chosen for EasyLife.

3.3 The usage of UML in EasyLife

During the requirement analysis of EasyLife, use case diagrams were used in user definition

and use case analysis. Use case diagrams are one type of behavior diagrams. They are used

to present a graphical overview of the functionality by outlining the operations and relations

between different types of actors.

In a Use case diagram, there are several elements:

• Actors: there are one or more actors used in different roles in the system, such as

visitor, administrator, and assigned user.

• Actions: Use case diagram includes the actions of different actors.

• Environments: Use case diagram includes different environments where the actions

take place.

• Relations: Use case diagram uses arrows to show all the relationships between actors,

actions, and environments.

Let us look at one example in figure 3.1: in the diagram, there are four different types

of actors: waiter, client, cashier and chef. The waiter’s functions include: receive order of

CHAPTER 3. UML 11

Figure 3.1: Use case diagram of a restaurant[11]

food and wine, serve food and wine. The client’s functions include: order food and wine,

eat food and drink wine, pay for food and wine. The cashier’s functions include accepting

the payment of food and wine. The chef’s functions include receiving the order of food and

cooking the food. In addition, the actors and actions are connected by lines and dashed-lines

with arrows. The relations are described by the comments on the line. All the actions take

place in an environment called “System Boundary”.

3.4 UML Model building in Microsoft Office Visio

There are several different tools used to draw UML diagrams. Microsoft Office Visio is one

of the best choices. Take Microsoft Office 2007 for example: users can create different file

types and drag the components into the canvas instead of drawing them one by one. What is

more, the widgets in Visio are internationally recognized and render professional diagrams.

CHAPTER 3. UML 12

All UML diagrams during the requirements analysis of EasyLife were built using Microsoft

Office Visio 2007.

Chapter 4

User definition

As we mentioned in Chapter 3, use case diagrams will be used to express the actions of

different users. We will draw one use case diagram for each type of user with some minor

changes to make the diagrams easier to understand.

4.1 User classes

There are three types of users in this system and they have different rights and requirements

when they enter the system.

Figure 4.1: User classes of EasyLife

13

CHAPTER 4. USER DEFINITION 14

As Figure 4.1 shows, there are three types of users in EasyLife: visitors, individual users

and VIP/business users. When a visitor enters the website, he/she will first be led to the

home page: the information list page. A visitor has some basic rights, if he/she wants to

get more rights, he/she can choose to register and login to become an individual user, or

even a VIP/business user.

The detailed definitions of visitors, individual users and VIP/business users are outlined

in Sections 4.2, Section 4.3 and Section 4.4.

4.2 Visitors

Visitors are customers who do not register, so they only have some basic rights.

Figure 4.2: Use case diagram visitor

As per Figure 4.2, anyone can become a visitor without any requirement. At the same

time, a visitor only has basic rights: 1. Browse the home page (Information listing page).

2. Search information.

The following is the use scenario of a visitor:

User: Luke

Time: 2010/5/20

Goal: Get house renting information in Burnaby, B.C.

Background: Luke is a new international student who will begin his academic career

in SFU this September. Before he comes to Vancouver, he decides to get house rental

information near SFU Burnaby campus by using EasyLife.

CHAPTER 4. USER DEFINITION 15

Scenario: When Luke first enters the website, he sees the Register/Login buttons that

advise him to register or login. However, Luke doesn’t want to register,he feels that he only

needs to do a basic search. So he decides to browse the website as a visitor.

Firstly, he finds there is a section on the home page called house rental. When he clicks

on the title, an information list of house rental appears. After scanning the page, Luke

realizes that he should search houses located in North Burnaby because there are too many

rental advertisements. So in the search section of the homepage, he chooses his location as

Burnaby and clicks on the search button. Luckily, he finds the house he wants and signs

the lease shortly after contacting the landlord.

4.3 Individual users

Individual users are registered members with more rights compared to visitors.

Figure 4.3: Use case diagram individual user

CHAPTER 4. USER DEFINITION 16

According to Figure 4.3, the requirements of becoming an individual user include: Reg-

istration and login. During the registration, he/she needs to provide a nickname and the

password to login, and the email address to activate his/her account. An individual user

has the following rights:

1. Browse the home page (Information listing page), search information.

2. Design his own page by using basic templates and widgets.

3. Publish the page under EasyLife.

The following is the use scenario of an individual user:

User: Luke

Time: 2010/12/10

Goal: Create an online page to sell Christmas gifts.

Background: After studying one semester at SFU, Luke starts to get used to his life in

Canada. However, the international tuition fees are very high, Luke thinks he needs to earn

some money. With Christmas coming, he decides to sell the gifts he bought from China

online in Vancouver. Once again, EasyLife would be a good way to do this.

Scenario: Luke enters the homepage of EasyLife, then clicks the register button and

goes to the registration page. After filling out the necessary information, such as nickname,

password and email address, he completes the registration and logins in. Because Luke

wants to create his own webpage, he goes to the design page by clicking the “Design your

own webpage” link.

Now, Luke is on the design page; on this page, he chooses the personal sale template, and

designs his own webpage by following the instruction shown on the page. After reviewing

and making sure the layout and information are what he wants, he clicks on the “Publish”

button to go to the publish page. On the publish page, he fills the summary information of

his online shop, such as name, location, brief description, and then publishes the webpage.

Finally, he sells out all his stock before the end of the holidays.

4.4 VIP/Business users

The business users, or VIP Users, have some more rights compared with individual users.

At the same time, they need to meet more requirements to get these rights.

CHAPTER 4. USER DEFINITION 17

Figure 4.4: Use case diagram VIP/business user

According to Figure 4.4, a VIP/business user needs to meet the following requirements:

1. Real name registration and login (Information needs to be provided in registration

include: last name, first name, nickname, password, email address, number of one

piece of his ID)

2. After one month’s trial, the user must pay for continued usage.

Accordingly, a VIP/business user has the following rights:

1. Browse the home page (Information listing page), search information.

CHAPTER 4. USER DEFINITION 18

2. Design his/her page by using both the basic and advanced widgets (e.g. search Bar,

and bulk upload).

3. Publish the page under EasyLife.

4. Priority in the search results.

The following is the use scenario of a VIP/business user:

User: Luke

Time: 2014/09/15

Goal: Open an online shop to sell tea leaves.

Background: Luke graduates in June, 2014 with a business degree. After graduation,

he chooses to build his own business to import tea leaves from China and sell them in

Vancouver. He decides to start by opening a virtual store. There is no doubt that EasyLife

is still his first choice. But this time, he wants to be a VIP/business user to get extra

priority to promote his business.

Scenario: Once Luke logs in as an individual user, he chooses to upgrade to a VIP/Busi-

ness user, and on the pop out page, he fills out the required additional information, such

as last name, first name, the number on his driver’s licence. He then clicks “Upgrade” to

become a VIP user.

After that, Luke enters the design page, and chooses a template to create his own page.

As a VIP user, he can bulk upload all his products information at one time and decorate

his page. After publishing the page, he types tea in the search bar, and find his online shop

is at the top of the list.

4.5 Use cases

After defining the user classes, drawing the use case diagrams and analyzing the use scenar-

ios, we can begin to write use cases to describe the main functions of EasyLife.

Use-case: Access online information

Primary actor: Visitor, individual user or VIP user

Goal in context: To see the information of online pages in different section

Pre-conditions: Visitor, individual user or VIP user has landed on the system.

Trigger: Visitor, individual user or VIP user decides to go to the information page of one

CHAPTER 4. USER DEFINITION 19

section.

Scenario:

1. Visitor, individual user or VIP user: lands on the system.

2. Visitor, individual user or VIP user: clicks the specific section he interested in.

Exceptions: The system will crash if too many users land on the system: improve the

quality of the system and limit the max number of landing on users.

Priority: Essential, must be implemented

When available: First increment

Frequency of use: Many times per day

Channel to actor: Via the browser

Secondary actor: Central database server

Channels to secondary actor:

Administrator: Via the browser

Central database server: Intranet (hardwired or wireless)

Use-case: Design page

Primary actor: Individual user or VIP user

Goal in context: Design own webpage in EasyLife

Pre-conditions: The individual user or VIP user has already logged in the system.

Trigger: The individual user or VIP user wants design their own webpage.

Scenario:

1. Individual user or VIP user: double click “Design you own webpage” link in homepage.

2. Individual user or VIP user: choose the template he want, and drag it into the canvas.

3. Individual user or VIP user: design the page following the instruction.

4. VIP user: use extra component and function when design the page.

Priority: Essential, must be implemented

When available: First increment

Frequency of use: Many times per day

Channel to actor: Via the browser

CHAPTER 4. USER DEFINITION 20

Secondary actor: Central database service

Channels to secondary actor:

Central database service: Intranet (hardwired or wireless)

Use-case: Publish pages

Primary actor: Individual user or VIP user

Goal in context: To publish the pages designed

Preconditions: The individual user or VIP user has already logged into the system and

finished design.

Trigger: The individual user or VIP user has finished the design and wants to publish his

webpage in EasyLife.

Scenario:

1. Individual user or VIP user: Click “Publish” link in design page to enter the “pub-

lishing webpage”. page.

2. Individual user or VIP user: Fill the information in the page.

3. Individual user or VIP user: Click “Publish”.

Priority: Essential, must be implemented

When available: First increment

Frequency of use: Many times per day

Channel to actor: Via the browser

Secondary actor: Central database service

Channels to secondary actor: Central database service: intranet (hardwired or wireless)

Part III

Interface Design

21

Chapter 5

Adobe Fireworks

5.1 Introduction of FW

Adobe Fireworks (“FW”), is a bitmap and vector graphic editor originally developed by

Macromedia and acquired by Adobe in 2005[5]. FW is popularly used by web designers to

quickly design prototypes of interface or even entire websites.

FW inherits the classical features of other products in Adobe Creative Suite, such as

the interface, the smart guide and the operation style. Adobe Fireworks CS4, which is the

current released version, supplies users some new cool features which can help us design

webpage prototypes in an easy way[5, 12].

5.2 Reasons of using Adobe FW

Adobe Fireworks CS4 has many features that make it one of the best tools to design the

webpage prototypes.

• Page Set[12]: In website design, many pages may have similar styles or even layouts.

For example, in the website of a restaurant, every page may has the same layout,

except perhaps with highlights of different tabs. In FW CS4, the user can design one

template and set the template as the Master Page. Then he/she can apply the layout

to all the sub pages in the set. When changes are required to be made to the layout,

the user can just change it in the Master Page. It will be automatically applied to all

the pages in the site.

22

CHAPTER 5. ADOBE FIREWORKS 23

• Smart Guide[12, 16]: Smart Guide is added in FW CS4 to help users align and position

objects. When a user creates an object and moves it on the canvas, the smart guide

(a dashed cross) will help him/her locate his/her object according to other relative

elements). For example, when a user creates a button, and wants to insert the text

into the button, he can just move the text box around the button. When the dashed

cross appears, it means the text box is in the centre of the button.

• CSS Export[12]: FW is mostly a layout designing software; but if users want to use

the CSS code for future development, they can choose to export the layout into clean

CSS code.

There are also some more cool features in FW CS4, such as Sample Text, Common

Library, and Element Import. All these features make FW CS4 a powerful design tool, so

it is selected as the interface prototypes design tool for EasyLife.

5.3 The usage of Adobe FireWorks in EasyLife

FW is used as the interface prototypes design tool during the development of EasyLife.

The prototypes include:

• Home page: the home page of EasyLife with information listing.

• Design page: the page for individual users or VIP Users to design their own webpages.

• Templates: the templates used to drag into the canvas when users design their pages.

They include:

– Grocery webpage template.

– Restaurant webpage template

– Personal sale webpage template.

• Submitting page: the submitting page appears when users finish page design and click

to publish their page.

FW will only be used in prototype design which aims to express different widgets and

their relative positions. Therefore, the prototypes will only include the basic widgets (e.g.

text box, image box, buttons and borders of different areas). For the layout design later, it

will need more helpful software such as Adobe Photoshop and Flash.

Chapter 6

Interface prototypes design

There are four major interface prototypes in EasyLife: Home Page, Design Page, Templates,

and Submitting Page. The details will be outlined from Sections 6.1 to 6.4.

6.1 Home page

Figure 6.1 is the interface prototype of home page:

Home page consists of the following widgets:

Top part:

• Logo: The logo of EasyLife.

• Location bar: user can choose his location to improve the accuracy of the search result

and information listing.

• Button1: Design own website: links to webpage design page.

• Button2: Register: links to register page for visitor.

• Button3: Login: links to login page for registered user.

• Search bar: user can type query inside to search the web pages within EasyLife.

Highlight part:

• Display the highlight pictures: e.g. important website information, advertisement and

suggested pages.

24

CHAPTER 6. INTERFACE PROTOTYPES DESIGN 25

Figure 6.1: Home page prototype

Advanced search bar:

• Includes the advanced search choices to improve the accuracy of search results: e.g.

search by the category of website.

Information listing part:

• Contains different sections. In each section, lists the links of websites belong to this

section.

Bottom part:

• Website information: includes website information such as the instruction, contact

information, and copy right issues.

6.2 Design page

Figure 6.2 is the interface prototype of design page:

CHAPTER 6. INTERFACE PROTOTYPES DESIGN 26

Figure 6.2: Design page prototype

Design page consists of the following components:

Top part:

• Logo: The logo of EasyLife.

Tool Bar:

• Templates of different kind of websites.

• Components section: website components used for further design.

Canvas:

• Instruction box: display the instruction for each templates or components which is

currently selected.

• Canvas: Canvas used to design web page.

• Button1: Design: shows during design process.

CHAPTER 6. INTERFACE PROTOTYPES DESIGN 27

• Button2: Review: used to review the page during design.

• Button3: Save: save the page during design.

• Button4: Publish: links to the publish page after finishing design.

6.3 Templates

Templates are used for users who do not have much computer science knowledge. By using

templates, users can just drag the templates into the canvas, and design inside the templates

following the instruction displayed in instruction box.

By now, there are three kinds of templates: Grocery, Restaurant, and Personal Sale.

Their interface prototypes are outlined in Sections 6.3.1, 6.3.2 and 6.3.3.

6.3.1 Grocery

Figure 6.3 and Figure 6.4 are the interface prototypes of the grocery webpage:

• Home page

Figure 6.3: Template grocery homepage prototype

The home page of grocery interfaces includes:

Top part:

– Logo: The logo of the grocery.

– Search bar: it is used for searching the items in the grocery website.

CHAPTER 6. INTERFACE PROTOTYPES DESIGN 28

Main part:

– Image: designer can upload the image of their companies. They can also upload

important notices, sales promotionsm etc..

– Highlight Items: the highlight product of the grocery.

• Production page:

Figure 6.4: Template grocery production page prototype

The production page of grocery interfaces includes:

Top part:

– Logo: The logo of the grocery.

– Search bar: it is used for searching the items in the grocery website.

Main part:

– Classified bar: user can browse the products in different categories by clicking

the relative button in the classified bar.

– Products listing: the list of the products within this section.

6.3.2 Restaurant

Figure 6.5 and Figure 6.6 are the interface prototypes of the restaurant webpage:

• Home page:

Home page of restaurant interfaces includes:

CHAPTER 6. INTERFACE PROTOTYPES DESIGN 29

Figure 6.5: Template restaurant home page prototype

Top part:

– Logo: The logo of the restaurant.

Main part:

– Image and text boxes: designers can upload the image or input text which is

used to introduce their restaurant.

• Menu page:

Figure 6.6: Template restaurant Manu page prototype

Menu page of restaurant interfaces includes:

Top part:

– Logo: The logo of the restaurant.

CHAPTER 6. INTERFACE PROTOTYPES DESIGN 30

Main Part:

– Classified bar: user can browse the menu of different category by click the relative

button in classified bar.

– Listing: the menu of the given category.

6.3.3 Personal sale

Figure 6.7 is the interface prototypes of personal sale:

Figure 6.7: Template Personalsale page prototype

Personal sale interface prototype includes:

• Title: the title of the sale.

• Main part: the description of the sale, contact information, links of pictures and so

on.

6.4 Submitting page

Figure 6.8 is the interface prototypes of submitting page:

Submitting page interface prototype includes:

• Information input bars: the designer should input the following information in the

page before publishing it in EasyLife: website name, website URL, address, postal

code and the category of his/her page.

CHAPTER 6. INTERFACE PROTOTYPES DESIGN 31

Figure 6.8: Template submit page prototype

• Buttons: designer can choose to publish his/her page or cancel by clicking the relative

buttons.

Part IV

Database Design

32

Chapter 7

MySQL

7.1 Introduction of MySQL

MySQL is a relational database management system which supports multiple users’ access[13].

MySQL was originally developed by two Swedish scientists and a Finnish scientist: David

Axmark, Allan Larsson and Michael Widenius[8]. After being acquired by Oracle Corpora-

tion and after more than 10 years of development, it has become one of the world’s most

popular database softwares[8].

MySQL is written in C and C++, and works with most operating system such as Linux,

Mac OS X and Microsoft Windows. Because of the well-known advantages, such as fast

speed, reliability, and ease of learning, MySQL is widely used by both large organizations

and small corporations, even individual users. More importantly, as an open source software,

MySQL is used by many computer science students when they are learning courses related

to database system and data mining[8].

7.2 The reason of using MySQL

MySQL has its own advantages compared to other popular database software.

• MySQL vs Microsoft Access[2]

Microsoft access is a database management tool which is used by web maintainers to

store information and operate data in a local system. It was developed by Microsoft

33

CHAPTER 7. MYSQL 34

and first released in 1992[2]. As a Microsoft product, Access is compatible with most

Microsoft software, and very easy to use.

The advantages of MySQL compared to Microsoft Access are:

– Cost: MySQL is an open source software and free to use.

– Support for large databases: MySQL is more powerful when required to handle

a large database.

– Support for multiple users: MySQL supports multiple users access to the database

at the same time while Access only allows one user to use the database at any

time.

– Support for multiple operating systems: MySQL can be used with different op-

erating systems while Access is only compatible with Microsoft Windows.

• MySQL vs MS SQL[3]

MS SQL, which stands for Microsoft SQL Sever, is another Microsoft database software

which was first released in 1989[3]. Compared to Access, it is a more professional

database product of Microsoft. MS SQL has more functions, such as search, query,

analyze and report, and is preferred by web masters.

The advantages of MySQL compared to MS SQL are:

– Cost: MySQL is an open source software and free to use.

– Support for multiple operating systems: MySQL can be used among different

operating system while MS SQL is only designed for Microsoft Windows.

• MySQL vs Oracle[3]

Oracle is a relational database management system developed by Oracle Corporation[4].

It has a free version but does not include all the functions. Oracle is mostly used for

very large applications and the users need to have relatively extensive knowledge and

skills to deal with large amounts of data.

Compared to Oracle, MySQL is very simple to use, and powerful enough for the

development of EasyLife.

In light of the above arguments, MySQL was selected as the database software for

EasyLife.

CHAPTER 7. MYSQL 35

7.3 The usage of MySQL in EasyLife

MySQL is used in EasyLife development mainly in the following two parts:

• Data Storage: MySQL is used to store different types of data in EasyLife, including

user data and webpage data. Details are outlined in Chapter 8.

• Search engine: The data stored in MySQL is used in the search engine implementation.

Details are outlined in Chapter 10.

Chapter 8

Database design and

implementation in MySQL

8.1 Data specification

The data which used in EasyLife can be divided into two parts:

• User information

User information(Table 8.1) is the data used to describe any customer who has an

account in EasyLife:

Name Type Range Description Comment

User ID String >1 char User ID used to login Primary Key

Last Name String >1 char It is a user’s last name VIP user only

First Name String >1 char It is a user’s first name VIP user only

ID Number String >1 char It is the number of user’s ID VIP user only

Password String >1 char It is the password to lonin

Email address String >1 char It is the email address used to register

Table 8.1: Data table User

• Webpage information

Webpage information(Table 8.2) is the data used to describe the webpage created and

designed by a specific user:

36

CHAPTER 8. DATABASE DESIGN AND IMPLEMENTATION IN MYSQL 37

Name Type Range Description Comment

Page ID String >1 char It is the page id of the web page Primary key

Owner String >1 char ID of the user who created the page Foreign key

Web name String >1 char The name of the web page After publishing

Web address String >1 char It is the address of the web page After publishing

Add Country String >1 char Country name of the web site After publishing

Add Province String >1 char Province name of the web site After publishing

Add City String >1 char City name of the web site After publishing

Postal Code String >1 char Postal code of the web site After publishing

Category String >1 char Category of the web site After publishing

Flag Boolean 0 or 1 If the web page is published or not After publishing

Text String >1 char All the text within the web page After publishing

Last Modified String >1 char The last time the page is modified After publishing

page property String >1 char All the property of the web page After publishing

Description String >1 char Description of the web page After publishing

Table 8.2: Data table Page

8.2 Data structure

8.2.1 Overview of Entity-Relationship Diagram

Entity-Relationship Diagram (ERD), is an abstract and graphic representation method of

the data base structure based on Entity-Relationship Modeling[14]. It includes three parts:

• Entities

An entity can be viewed as an object which contains different attributes. It can be an

abstract form or a physical object. Normally, an entity is a noun in database modeling

(e.g. a house, a user, or a time schedule), and represented as a rectangle in ERD.

• Relationships

Relationships are the connections between different entities. For examples, the de-

sign page action can be viewed as a relationship between entity ”User” and entity

”Webpage” in EasyLife. Normally, a relationship is a verb in database modeling, and

represented as a diamond in ERD.

• Attributes

Both entities and relationships can have their own attributes. They are used to de-

scribe the entities or relationships in ERD. In an entity, there should be at least one

CHAPTER 8. DATABASE DESIGN AND IMPLEMENTATION IN MYSQL 38

attribute which can identify the entity, and this attribute is the primary key of the

entity. Normally, an attribute is a noun in database modeling, and represented as an

ellipse. In addition, the primary key is the ellipse whose name has an underline.

8.2.2 ERD of EasyLife

Figure 8.1 is the ERD of EasyLife:

Figure 8.1: ERD of EasyLife

8.3 Database implementation in MySQL

8.3.1 Two ways of database implementation in MySQL

MySQL has two ways to implement database, one way is through the Unix command line

interface, the other is through a graphic interface. For a user who is not used to Unix

commands, he/she can choose to either download the official MySQL Workbench from the

MySQL official website1, or get some third party software such as phpMyAdmin, HeidiSQL

or Adminer.

Since the implementation in graphic interface is straightforward, we focus on the intro-

duction of database management through the Command Line Client in MySQL.

1To download the MySQL workbench, please go the the official cite of MySQL:
http://www.mysql.com/downloads/

CHAPTER 8. DATABASE DESIGN AND IMPLEMENTATION IN MYSQL 39

8.3.2 Connect to the database server

The first step in creating and managing data in MySQL is to connect to the server. During

the installation and deployment of MySQL, the user can create the server under his user

name. After that, the user should first run the MySQL Command Line Client in “Start -

All Programs - MySQL - MySQL Server 5.1 - MySQL Command Line Client”.

As shown in Figure 8.2, in the pop out window, the user can connect to the server

by typing in the password. If the server is connected, it will provide some introductory

sentences followed by a mysql> prompt (Note: all the commands in the Command Line

Client are case sensitive).

Figure 8.2: Screenshot MySQL connect to the sever

Users can exit the Command Line Client by typing “quit” and pressing Enter.

8.3.3 Choose a database or create a new database

• Choose an existing database

As shown in Figure 8.3, if “Show Databases;” is typed, in the Command Line

Client, the user can see all the databases in the server. The user can then type “Use

‘database name’” to choose an existing database to manage. If it succeeds, there

CHAPTER 8. DATABASE DESIGN AND IMPLEMENTATION IN MYSQL 40

will be one line showing “Database changed”

Figure 8.3: Screenshot MySQL choose database

• Create a new database

If you want to create a new database, what you can do is ask your MySQL administra-

tor to give you permission or type “GRANT ALL ON ‘your database name’.*

TO ‘your mysql name’@‘your client host’;” to create a new database.

8.3.4 Create table

Figure 8.4: Screenshot MySQL creat table

As shown in Figure 8.4, type “Show Tables;” to see the current tables in the database.

CHAPTER 8. DATABASE DESIGN AND IMPLEMENTATION IN MYSQL 41

For example, there is no table in the database “test”.

If we want to create a table named “User” , we can type the command:

mysql> CREATE TABLE User (LastName VARCHAR(20), FirstName VAR-

CHAR(20), IDNumber VARCHAR(20), UserID VARCHAR(20), Password VAR-

CHAR(20), EmailAddress VARCHAR(40));

If it succeeds, when we type “Show Tables”, the table named User will be shown

although there is no row in it yet.

8.3.5 Load data into table

To insert data into a table, the user can choose two different ways. When there are many

rows you want to insert, you can first create a txt file or some other type of file, then load

the whole file into the table. The command is:

mysql> LOAD DATA LOCAL INFILE ‘/path/User.txt’ INTO TABLE User;

If you want to insert just one or two lines, maybe it is better to insert the row in the

table directly by using the following command:

mysql> INSERT INTO User VALUES (‘Chen’,‘Weiwei’,‘1234567’,‘WeiweiChen’,

‘1234567’,‘wca29@sfu.ca’);

Below is the screen short after inserting the row:

Figure 8.5: Screenshot MySQL load data

By using the above method, we created two tables in EasyLife: one is named “user”

which is used to store user information, the other is named “page” which is used to store

page information.

Part V

Search Engine Implementation

42

Chapter 9

Overview of website search engines

and Apache Lucene

Most online trading websites have their own search engines and so does EasyLife. This

chapter provides the background for web search engines, and introduces a useful open source

tool named Apache Lucene to configure search engine.

9.1 Three methods of putting a search engine in a website

There are three ways to insert a search engine in a website[10]: installing a search engine

library, using a free or commercial third party hosted search engine service, or using major

search engine. The following three sections will introduce these three methods.

9.1.1 Installing a search engine library

During the website development phase, developers can choose to install the search engine

library themselves. There are many free search engine libraries to download, and the devel-

opers can choose to use the one which adapts to their websites.

There are two types of search engine libraries. One will search the entire website every

time a user sends a search request. The other will build an index of all the web pages first,

and only search over the index when a user uses the search engine. The first one is easier to

configure, but it will become more inefficient when the website gets larger. The second type

of library is more efficient and the web maintainer can choose to refresh the index anytime

43

CHAPTER 9. OVERVIEWOFWEBSITE SEARCH ENGINES ANDAPACHE LUCENE44

he wants.

This method has the following advantages:

• Developers can customize the search result and even the score proportion.

• No third party advertisement occurs on the website.

• Developers can index their web pages whenever they want. (For the library that builds

an index)

The disadvantages are:

• Need to install the necessary environment platform and other tools.

• Need to have strong computer science background and coding ability.

9.1.2 “Using a free or commercial third party hosted search engine ser-

vice”

If the developers don’t have enough computer science background, or don’t want to spend

much time on implementing a search engine, they can use a free or commercial third party

hosted search engine service.

For example, after you register and login to a website what supplies a third party hosted

search engine service, you can send the request by supplying the necessary information such

as the URL of your website. After that, the search engine service will index your website

and plug the search engine into your HTML file.

This method has the following advantages:

• No need to have the ability to install the library into your website and no need to

program or configure the search engine.

• No need to worry about the index and layout of the search result page.

The disadvantages are:

• The time of indexing the webpages is dictated by the third party search engine service,

not by the website maintainers.

CHAPTER 9. OVERVIEWOFWEBSITE SEARCH ENGINES ANDAPACHE LUCENE45

• Some third party search engine services will require you to insert their own advertise-

ments into the search result display page. Also the URL shown in the address box of

the search result page will not be that of your website but the search engine supplier.

• Developers don’t have the absolute right of designing the search result page.

9.1.3 “Using major search engines”

Finally, you can use a major search engine such as Google as your website’s search engine.

To realize this, developers just need to go to the Google Custom Search Engine page and

complete the online form. However, by using this method, the developers’ rights of indexing

and displaying the results will be more limited.

9.1.4 Our choice

After analyzing all the three methods, we decided to use the first method that of installing

a search engine library. The library we use is Apache Lucene, which is an open source Java

library supplied by Apache Software Foundation.

9.2 Overview of Apache Lucene

9.2.1 Overview

Apache Lucene is an open source/free download information retrieval library, which is purely

built in Java. By using Lucene, developer can build its full-text search engine by inserting

the library into their main project and building the necessary interfaces1.

9.2.2 Features

As mentioned in its official site: “Lucene offers powerful features through a simple API”[6].

It has the following features:

1. “Scalable, High-Performance Indexing”[6]

1The current version of Apache Lucene is 3.0.1 which was released on Feb 26th, 2010. To download
and get started with the latest version of Lucene, please go to the official website of Apache Lucene:
http://lucene.apache.org.

CHAPTER 9. OVERVIEWOFWEBSITE SEARCH ENGINES ANDAPACHE LUCENE46

As mentioned in section 9.1, there are two types of search engine libraries: one will

search the entire website every time a user sends a search request, the other will build

an index first and then search the result in the index instead of travelling though the

entire website.

Apache Lucene is the second type of library which has a high quality indexing algo-

rithm. By using the fast and accurate indexing method, Lucene can build an index

whose size is only around 20% - 30% of the original text[6]. By using the index, the

search speed can be improved to over 20MB/minute[6].

2. “Powerful, Accurate and Efficient Search Algorithms”[6]

Apache Lucene uses several different ways to make the search accurate:

• “Ranked searching”[6]: after searching, Lucene will give the score of each file

according to the query. The score can be done in one of several ways. For

example, the frequency of the appearance of a query in the file, the field in the

file it appears in and so on.

• “Field searching”[6]: Lucene defines several fields of a file, e.g. title, author and

contents. Different fields will have different weights during the scoring. Also,

the user can decide which text belongs to which fields according to his/her own

needs. In addition, the user can choose to sort the result by any field.

• “Powerful query types”[6]: Lucene supplies many kinds of algorithms to deal

with queries, such as phrasing, wildcarding and ranging.

Beside these, there are more features listed in Lucene’s site, such as “date-ranging

searching”[6], “multiple-index searching with merged results”[6], and “simultaneous

update and searching”[6]. All these features make the searching more accurate and

effective.

3. “Cross - Platform Solution”[6]

Lucene is built in Java, but it also supports many other programming languages.

CHAPTER 9. OVERVIEWOFWEBSITE SEARCH ENGINES ANDAPACHE LUCENE47

9.3 The process of search engine building with Lucene

As a full-text search engine library, Lucene already has the algorithms for data retrieval,

such as indexing, parsing, searching, and scoring. All the users need to do is to write the

interface and to connect data flow. It includes the following steps:

1. Adding Lucence library

After creating a new project in the programming platform, the user needs to add the

Lucence library into the project for further use. For example, if we are building the

project in MyEclipse and using Lucene 3.0.1 for search engine implementation, we

should add the jar file: lucene-core-3.0.1.jar into our project as an external jar file.

2. Accessing a database (If a database is used as a data resource)

During the search engine building, the source data can be from real text files, or

the database. If the developer wants to use the database as the data source, he/she

needs to use some application programming interface (API), e.g. JDBC, to access the

database.

3. Indexing

Indexing is one of the most important steps during the implementation. In this step,

the user needs to create an in-memory index directory and add all the documents into

the IndexWriter.

“In Lucene, a document is the unit of index and search”[15]. It does not have to be

an English text file. For example, when we are searching a data table of a database,

each row of the table can be viewed as a document.

Moreover, a document can consist of one or more fields. Each field may have its own

property and weight. For example, a text file may include title, authors, and content.

When we add a text file in to the index, it can be represented as a document. We can

add the title into the “title” field, add the authors into “author” field, and add the

content into the “content” field. During the search, we can choose whether to score

each using its weight, to make the search more accurate.

4. Managing the query

CHAPTER 9. OVERVIEWOFWEBSITE SEARCH ENGINES ANDAPACHE LUCENE48

After creating the index, the next step is managing the query. As mentioned before,

Lucene supplies several ways of dealing with queries, such as phrasing, wildcarding

and ranging.

5. Searching and scoring

This step first hands the query into an IndexSearch. After that, by using Lucene’s

scoring algorithm, it will return a list of hit documents, which are sorted by the scores.

6. Creating graphic interface

This is the last step of the search engine building. The developer can choose to

input the query and print out different fields of the hit documents in the command

line window. But in most situations, we need to create a graphic interface to input

the query and display the search result. During this step, the developer can choose

the fields of the hit documents he/she wants to display, and implement the input and

output interfaces with the help of external tools such as JSP/indexJSP, CSS/indexCSS

and HTML/indexHTML.

There is one important thing needs to be pointed out, it is better to separate indexing

and searching into different classes when implementing the search engine. The reason is

that, if we put these two methods in the same class, it will refresh the index every time

the user sends a search request. As a good performance search engine, the index refresh

frequency should depend on the maintainer, instead of the user.

Chapter 10 describes the search engine implementation process in EasyLife using Apache

Lucene.

Chapter 10

Implementation of search engine in

Apache Lucene

In this chapter, we will show the process of searching engine building in EasyLife.

10.1 Preparation

Before we begin to build the search engine in EasyLife, there are some preparation steps we

need to do:

1. Create project in MyEclipse. Firstly, we create a Web Project named SearchEngine

in MyEclipse.

2. Download and add external libraries. After the project is created, we download and

add two external libraries into the Referenced Libraries of the project. One library,

named lucene-core-3.0.1.jar, is the latest version of the lucene library. The other

library, named mysql-connector-java-5.1.12-bin.jar, is the latest version of the JDBC

library.

3. Create classes In the project, we create three classes. One is named IndexMan-

ager.java, which is used to implement the database connection and index building.

One is named SearchManager.java, which is used to implement the query parsing and

searching. The last one is named SearchResult.java, which is used to create the search

result object.

49

CHAPTER 10. IMPLEMENTATION OF SEARCH ENGINE IN APACHE LUCENE 50

Now we describe our implementation of the search engine.

10.2 Database connection

In the IndexManager.java1, using the following code, we connect the database named test,

which is the source data of our searching. The url of the database is “jdbc:mysql://localhost/test”,

and the user name and password of the database are both “spring”.

s t a t i c Connection conn ;
Class . forName (”com . mysql . jdbc . Dr iver ”) . newInstance () ;
S t r ing u r l = ” jdbc : mysql : // l o c a l h o s t / t e s t ” ;
conn = DriverManager . getConnect ion (ur l , ” sp r ing ” , ” sp r ing ”) ;

Program 10.1: Source code of database connection

10.3 Index building

s t a t i c Di rec tory d i r Index = new RAMDirectory () ;
StandardAnalyzer ana lyze r = new StandardAnalyzer (Vers ion . LUCENE 30) ;
indexWriter = new IndexWriter (dir Index , analyzer , true ,

IndexWriter . MaxFieldLength .UNLIMITED) ;
Resu l tSet r s e t = stmt . executeQuery (‘ ‘ s e l e c t ∗ from pages ’ ’) ;
whi l e (r s e t . next ()){
Document doc = new Document () ;
doc . add (new Fie ld (” t i t l e ” , r s e t . g e t S t r i n g (”Web Name”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;
// repeat f o r each column in r e s u l t s e t .

indexWriter . addDocument (doc) ; }

Program 10.2: Source code of index building

As shown in program 10.2: in the indexing step, we first build an index directory in

memory. Second, by using SQL “select * from pages”, we get all the data in the table

“pages”. This data can be used in searching and in displaying the search result. After that,

1The source file of IndexManager.java is listed in Appendix I

CHAPTER 10. IMPLEMENTATION OF SEARCH ENGINE IN APACHE LUCENE 51

in the “while” loop, we add all the columns which need to be searched or displayed in the

result set.

10.4 Query parsing

Now, we switch to SearchManager.java2. The following code is used to read the string, parse

it and build the query for searching.

S t r ing querys t r = keyWord ;
Query q t i t l e = new QueryParser

(Vers ion . LUCENE 30, ” t i t l e ” , ana lyze r) . parse (que rys t r) ;

Program 10.3: Source code of query parsing

10.5 Searching

In this step, we create an indexSearcher to search the index using the query. After that, by

using the TopScoreDocCollector, we get the hit documents which have the highest scores.

i n t h i t sPerpage =10;

IndexManager . c r ea te Index () ;

IndexSearcher s ea r che r =
new IndexSearcher (IndexManager . getDirIndex () , t rue) ;

TopScoreDocCol lector c o l l e c t o r =
TopScoreDocCol lector . c r e a t e (hitsPerpage , t rue) ;

s e a r che r . s earch (q t i t l e , c o l l e c t o r) ;
ScoreDoc [] h i t s = c o l l e c t o r . topDocs () . scoreDocs ;

Program 10.4: Source code of searching

2The source file of SearchManager.java is listed in Appendix I

CHAPTER 10. IMPLEMENTATION OF SEARCH ENGINE IN APACHE LUCENE 52

10.6 Graphic interfaces

The last step is creating graphic interfaces. First, we use SearchResult.java to package the

fields we need in the hit documents. Second, we create two .jsp files and two .css files in the

WebRoot folder of our project. Index.jsp and layout.css are used to draw the query input

page, searchResult.jsp and resultlayout.css are used to draw the result display page3.

Figure 10.1 and figure 10.2 are the screen shots of the input and output page.

Figure 10.1: Screen shots of input page

Figure 10.2: Screen shots of output page

3The source files of Index.jsp, searchResult.jsp, layout.css and resultlayout.css are listed in Appendix I

CHAPTER 10. IMPLEMENTATION OF SEARCH ENGINE IN APACHE LUCENE 53

As we can see, in the input page (the homepage of EasyLife), when the user types

”fisher” in the search bar at the top right of the page and clicks GO, all the hit pages will

be returned and shown in the result page.

Part VI

Conclusion

54

55

Up to this point, we have finished four parts of the development. These include: re-

quirement analysis, interface design, database design and search engine implementation.

During the requirement analysis phase, we used UML as the main tool to draw the use

classes and use case diagrams. Based on the diagram, we wrote the use scenarios and use

cases. Requirement analysis is a basic and very important step in software engineering and

project development. Through successful requirement analysis, we built a solid foundation

for the development of EasyLife in the future.

During the prototype design phase, we used Adobe Fireworks as the main tool to design

the prototypes of pages. The prototypes are blueprints for future page beautification. In

addition, the prototype design can give us some ideas about database design and other

applications within EasyLife.

During the database design phase, we created two tables. Based on the database design,

we drew the ERD diagram and built the database using MySQL. Database is the data center

of a website. After building the database, we can begin the other development steps such

as data input, data output and search engine implementation.

The last development step was the search engine implementation. With the help of

Apache Lucene, we successfully built a mini search engine in EasyLife, and achieved basic

search functions using a graphic interface.

These four parts, combined with the steps shown in Kefu Zhao’s capstone project report4,

describe the whole development process of a Website named EasyLife. Through all the steps,

we achieved the main functions of EasyLife, which include:

• Graphic interface, information storage and reading

• EasyWeb - an easy use webpage design tool

• Data searching

However, because of the shortage of time and knowledge, there are still some areas for

improvement, they include:

• Page beautification

• Improvement of searching accuracy

4Please refer to Kefu Zhao’s capstone project report for more details[17]

56

• Incorporating more widgets and templates.

In conclusion, through all the steps shown in the two reports, we created a new online

trade website named EasyLife. However, more effort needs to be put in the future in order

to make it a business product.

Appendix A

Source code of searching engine

implementation

The following sections include the source code of the implementation of search engine in

EasyLife.

A.1 IndexManager.java

package search ;

import java . i o . F i l e ;

import java . i o . IOException ;

import java . s q l . Connection ;

import java . s q l . DriverManager ;

import java . s q l . Resu l tSet ;

import java . s q l . SQLException ;

import java . s q l . Statement ;

import org . apache . lucene . index . CorruptIndexException ;

import org . apache . lucene . index . IndexWriter ;

import org . apache . lucene . a n a l y s i s . standard . ∗ ;

import org . apache . lucene . document . ∗ ;

import org . apache . lucene . queryParser . ∗ ;

57

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 58

import org . apache . lucene . search . ∗ ;

import org . apache . lucene . s t o r e . ∗ ;

import org . apache . lucene . u t i l . ∗ ;

import org . apache . lucene . index . ∗ ;

public class IndexManager {
stat ic Connection conn ;

stat ic IndexWriter indexWriter ;

stat ic Direc tory d i r Index = new RAMDirectory () ;

public stat ic Direc tory getDirIndex () {
return d i r Index ;

}
public void se tDi r Index (Di rec tory d i r Index) {

this . d i r Index = di r Index ;

}
protected IndexManager (){
}
public stat ic IndexManager i n s t anc e ;

public stat ic void c r e a t e I n s t a n c e (){
i n s t anc e = new IndexManager () ;

}
public stat ic IndexManager ge t In s tance (){

return i n s t anc e ;

}
public stat ic void c reate Index () throws IOException , Exception {
try {

Class . forName (”com . mysql . jdbc . Dr iver ”) . newInstance () ;

S t r ing u r l = ” jdbc : mysql : // l o c a l h o s t / t e s t ” ;

conn = DriverManager . getConnect ion (ur l , ” sp r ing ” , ” sp r ing ”) ;

StandardAnalyzer ana lyze r =

new StandardAnalyzer (Vers ion . LUCENE 30) ;

indexWriter = new IndexWriter (dir Index , analyzer , true ,

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 59

IndexWriter . MaxFieldLength .UNLIMITED) ;

Statement stmt = conn . createStatement () ;

Resu l tSet r s e t = stmt . executeQuery (” s e l e c t ∗ from pages ”) ;

r s e t . b e f o r e F i r s t () ;

while (r s e t . next ()){
Document doc = new Document () ;

doc . add (new Fie ld (” t i t l e ” , r s e t . g e t S t r i n g (”Web Name”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (”web add” , r s e t . g e t S t r i n g (”Web Address”) ,

F i e ld . Store .YES, F i e ld . Index .NOT ANALYZED NO NORMS)) ;

doc . add (new Fie ld (” add country ” , r s e t . g e t S t r i n g (”ADD Country”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” t i t l e ” , r s e t . g e t S t r i n g (”ADD Country”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” add prov ince ” , r s e t . g e t S t r i n g (”ADD Province”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” t i t l e ” , r s e t . g e t S t r i n g (”ADD Province”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” add c i ty ” , r s e t . g e t S t r i n g (”ADD City”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” t i t l e ” , r s e t . g e t S t r i n g (”ADD City”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” pos ta l code ” , r s e t . g e t S t r i n g (” PostalCode ”) ,

F i e ld . Store .YES, F i e ld . Index .NOT ANALYZED NO NORMS)) ;

doc . add (new Fie ld (” category ” , r s e t . g e t S t r i n g (” Category ”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” t i t l e ” , r s e t . g e t S t r i n g (” Category ”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (”owner” , r s e t . g e t S t r i n g (”Owner”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” t i t l e ” , r s e t . g e t S t r i n g (”Owner”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” t i t l e ” , r s e t . g e t S t r i n g (”Text”) ,

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 60

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” page Pro ” , r s e t . g e t S t r i n g (” Page Property ”) ,

F i e ld . Store .YES, F i e ld . Index .NOT ANALYZED NO NORMS)) ;

doc . add (new Fie ld (” d e s c r i p t i o n ” , r s e t . g e t S t r i n g (” Desc r ip t i on ”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

doc . add (new Fie ld (” t i t l e ” , r s e t . g e t S t r i n g (” Desc r ip t i on ”) ,

F i e ld . Store .YES, F i e ld . Index .ANALYZED)) ;

indexWriter . addDocument (doc) ;

}
indexWriter . opt imize () ;

indexWriter . c l o s e () ;

} catch (In s t an t i a t i onE xce p t i o n e) {
// TODO Auto−generated catch b l o c k

e . pr intStackTrace () ;

} catch (I l l e g a l A c c e s s E x c e p t i o n e) {
// TODO Auto−generated catch b l o c k

e . pr intStackTrace () ;

} catch (ClassNotFoundException e) {
// TODO Auto−generated catch b l o c k

e . pr intStackTrace () ;

} catch (SQLException e) {
// TODO Auto−generated catch b l o c k

e . pr intStackTrace () ;

} catch (Exception e){
e . pr intStackTrace () ;

}
}
public stat ic void main (St r ing [] a rgs) throws IOException , Exception {

IndexManager . c r e a t e I n s t a n c e () ;

IndexManager indexManager = IndexManager . g e t In s tance () ;

indexManager . c r ea te Index () ;

}
}

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 61

Program A.1: IndexManager.java

A.2 IndexManager.java

package search ;

import java . i o . F i l e ;

import java . i o . IOException ;

import java . i o . BufferedReader ;

import java . i o . InputStreamReader ;

import java . u t i l . ArrayList ;

import java . s q l . Connection ;

import java . s q l . DriverManager ;

import java . s q l . Resu l tSet ;

import java . s q l . SQLException ;

import java . s q l . Statement ;

import org . apache . lucene . index . CorruptIndexException ;

import org . apache . lucene . index . IndexWriter ;

import org . apache . lucene . a n a l y s i s . standard . ∗ ;

import org . apache . lucene . document . ∗ ;

import org . apache . lucene . queryParser . ∗ ;

import org . apache . lucene . search . ∗ ;

import org . apache . lucene . s t o r e . ∗ ;

import org . apache . lucene . u t i l . ∗ ;

import org . apache . lucene . index . ∗ ;

public class SearchManager {
public ArrayList<SearchResult> search (St r ing keyWord)throws IOException{

try{
ArrayList<SearchResult> r e s u l t ;

// The r e s u l t c o n s i s t s o f a r r a y l i s t , i n c l u d i n g webname , webadd , . e t c .

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 62

r e s u l t = new ArrayList<SearchResult >() ;

StandardAnalyzer ana lyze r = new StandardAnalyzer (Vers ion . LUCENE 30) ;

// 2 . parse query

St r ing querys t r = keyWord ;

Query q t i t l e = new QueryParser (

Vers ion . LUCENE 30 , ” t i t l e ” , ana lyze r) . parse (que rys t r) ;

Query q web add = new QueryParser (

Vers ion . LUCENE 30 , ”web add” , ana lyze r) . parse (que rys t r) ;

Query q add country = new QueryParser (

Vers ion . LUCENE 30 , ” add country ” , ana lyze r) . parse (que rys t r) ;

Query q add prov ince = new QueryParser (

Vers ion . LUCENE 30 , ” add prov ince ” , ana lyze r) . parse (que rys t r) ;

Query q add c i ty = new QueryParser (

Vers ion . LUCENE 30 , ” add c i ty ” , ana lyze r) . parse (que rys t r) ;

Query q pos ta l code = new QueryParser (

Vers ion . LUCENE 30 , ” pos ta l code ” , ana lyze r) . parse (que rys t r) ;

Query q category = new QueryParser (

Vers ion . LUCENE 30 , ” category ” , ana lyze r) . parse (que rys t r) ;

Query q owner = new QueryParser (

Vers ion . LUCENE 30 , ”owner” , ana lyze r) . parse (que rys t r) ;

Query q d e s c r i p t i o n = new QueryParser (

Vers ion . LUCENE 30 , ” content ” , ana lyze r) . parse (que rys t r) ;

// 3 . search

int hi t sPerpage =10;

IndexManager . c r ea te Index () ;

IndexSearcher s ea r che r =

new IndexSearcher (IndexManager . getDirIndex () , true) ;

TopScoreDocCol lector c o l l e c t o r =

TopScoreDocCol lector . c r e a t e (hitsPerpage , true) ;

s e a r che r . s earch (q t i t l e , c o l l e c t o r) ;

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 63

ScoreDoc [] h i t s = c o l l e c t o r . topDocs () . scoreDocs ;

// 4 . d i s p l a y r e s u l t s

System . out . p r i n t l n (”Found ” + h i t s . l ength + ” webpages : ”) ;

ArrayList<Str ing> webName = new ArrayList<Str ing >() ;

ArrayList<Str ing> webAdd = new ArrayList<Str ing >() ;

ArrayList<Str ing> addCountry = new ArrayList<Str ing >() ;

ArrayList<Str ing> addProvince = new ArrayList<Str ing >() ;

ArrayList<Str ing> addCity = new ArrayList<Str ing >() ;

ArrayList<Str ing> pos ta l code = new ArrayList<Str ing >() ;

ArrayList<Str ing> d e s c r i p t i o n = new ArrayList<Str ing >() ;

for (int i =0; i<h i t s . l ength ;++ i) {
int docId = h i t s [i] . doc ;

Document d = sea r che r . doc (docId) ;

SearchResult s r = new SearchResult () ;

s r . setName (d . get (” t i t l e ”)) ;

s r . setWebAddress (d . get (”web add”)) ;

s r . setCountry (d . get (” add country ”)) ;

s r . s e tProv ince (d . get (” add prov ince ”)) ;

s r . s e tC i ty (d . get (” add c i ty ”)) ;

s r . setPosta lCode (d . get (” pos ta l code ”)) ;

s r . s e t D e s c r i p t i o n (d . get (” d e s c r i p t i o n ”)) ;

r e s u l t . add (s r) ;

}
s ea r che r . c l o s e () ;

return r e s u l t ;

}catch (Exception e){
e . pr intStackTrace () ;

}
return null ; // i f f a i l e d , re turn nu l l ;

}

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 64

public stat ic void main (St r ing [] a rgs) throws IOException , Exception {
}

}

Program A.2: SearchManager.java

A.3 SearchResult.java

package search ;

public class SearchResult {
public stat ic f ina l int FIELDS COUNT = 7 ;

protected St r ing webName ;

protected St r ing webAddress ;

protected St r ing country ;

protected St r ing prov ince ;

protected St r ing c i t y ;

protected St r ing postalCode ;

protected St r ing d e s c r i p t i o n ;

public SearchResult (S t r ing name , S t r ing addr , S t r ing coun ,

S t r ing prov , S t r ing c , S t r ing po , S t r ing des){
webName = name ;

webAddress = addr ;

country = coun ;

prov ince = prov ;

c i t y = c ;

postalCode = po ;

d e s c r i p t i o n = des ;

}
public SearchResult (){
}
public St r ing getName (){

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 65

return webName ;

}
public St r ing getWebAddress (){

return webAddress ;

}
public St r ing getCountry (){

return country ;

}
public St r ing getProv ince (){

return prov ince ;

}
public St r ing getCity (){

return c i t y ;

}
public St r ing getPostalCode (){

return postalCode ;

}
public St r ing ge tDe s c r i p t i on (){

return d e s c r i p t i o n ;

}
public void setName (St r ing name){

webName = name ;

}
public void setWebAddress (S t r ing addr){

webAddress = addr ;

}
public void setCountry (S t r ing coun){

country = coun ;

}
public void s e tProv ince (S t r ing prov){

prov ince = prov ;

}
public void s e tC i ty (S t r ing c){

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 66

c i t y = c ;

}
public void setPosta lCode (St r ing po){

postalCode = po ;

}
public void s e t D e s c r i p t i o n (S t r ing des){

d e s c r i p t i o n = des ;

}
}

Program A.3: SearchResult.java

A.4 index.jsp

<%@ page language=” java ” import=” java . u t i l .∗ ” pageEncoding=”ISO−8859−1”%>

<%

Str ing path = reques t . getContextPath () ;

S t r ing basePath = reques t . getScheme ()+

” :// ”+reques t . getServerName ()+” : ”+reques t . ge tServerPort ()+ path+”/” ;

%>

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01 T r a n s i t i o n a l //EN”>

<html>

<head>

<base h r e f=”<%=basePath%>”>

<t i t l e >CWW Search Engine</ t i t l e >

< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=” layout . c s s ” />

<meta http−equiv=”pragma” content=”no−cache ”>

<meta http−equiv=”cache−c o n t r o l ” content=”no−cache ”>

<meta http−equiv=” e x p i r e s ” content=”0”>

<meta http−equiv=”keywords” content=”keyword1 , keyword2 , keyword3”>

<meta http−equiv=” d e s c r i p t i o n ” content=” This i s my page”>

</head>

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 67

<body>

<div id=”pg”>

<div id=” header ”>

<div id=” h e a d e r l e f t ”>

<t a b l e border=”0”>

<tr>

<td>

<h1>

LOGO</h1>

</td>

<td>

<p>

Choose your l o ca t i on </p>

< l i >

<s e l e c t >

<option>Milk</option>

<option>Coffee</option>

<option>Tea</option>

</s e l e c t > Country</ l i >

< l i >

<s e l e c t >

<option>Milk</option>

<option>Coffee</option>

<option>Tea</option>

</s e l e c t > Province</ l i >

< l i >

<s e l e c t >

<option>Milk</option>

<option>Coffee</option>

<option>Tea</option>

</s e l e c t > City</ l i >

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 68

</td>

</tr>

</tab le>

</div>

<div id=” h e a d e r r i g h t ”>

<p>

<a>

<a> <a><img

s r c=” button1 . g i f ” he ight=”25”/>

</p>

<form method=” post ” ac t i on=” searchResu l t . j s p ”>

<p>

<input type=” text ” name=”keyword” s i z e=”45” />

<input type=”submit” value=”Go” />

</p>

</form>

</div>

</div>

<div id=”ad”>

<div id=” a d l e f t ”>

Web in fo , high l i g h t pages

</div>

<div id=” a d r i g h t ”>

<p>Advanced Search</p>

<p>Category</p>

< l i >

<s e l e c t >

<option>Milk</option>

<option>Coffee</option>

<option>Tea</option>

</s e l e c t > Country</ l i >

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 69

< l i >

<s e l e c t >

<option>Milk</option>

<option>Coffee</option>

<option>Tea</option>

</s e l e c t > Province</ l i >

< l i >

<s e l e c t >

<option>Milk</option>

<option>Coffee</option>

<option>Tea</option>

</s e l e c t > City</ l i >

< l i >

<s e l e c t >

<option>Milk</option>

<option>Coffee</option>

<option>Tea</option>

</s e l e c t > Country</ l i >

< l i >

<s e l e c t >

<option>Milk</option>

<option>Coffee</option>

<option>Tea</option>

</s e l e c t > Province</ l i >

< l i >

<s e l e c t >

<option>Milk</option>

<option>Coffee</option>

<option>Tea</option>

</s e l e c t > City</ l i >

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 70

<div id=” advanced go ”><input type=”submit” value=”Go”/></div>

</div>

</div>

<div id=” content ”>

</div>

<div id=” f o o t e r ”>

</div>

</div>

</body>

</html>

Program A.4: index.jsp

A.5 layout.css

div#pg{
width : 900px ;

he ight : 1000px ;

margin : 0 auto ;

}
div#header {

f loat : l e f t ;

margin− l e f t : 30 px ;

width : 840px ;

he ight : 130px ;

}
div#h e a d e r l e f t {

f loat : l e f t ;

width : 320px ;

he ight : 130px ;

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 71

}
div#h e a d e r r i g h t {

f loat : l e f t ;

margin− l e f t : 10px ;

width : 500px ;

he ight : 130px ;

}
div#ad{

f loat : l e f t ;

margin− l e f t : 30 px ;

width : 840px ;

he ight : 290px ;

}
div#a d l e f t {

f loat : l e f t ;

padding− l e f t : 5 px ;

width : 555px ;

he ight : 290px ;

border : s o l i d 1px grey ;

}
div#a d r i g h t {

f loat : l e f t ;

margin− l e f t : 5px ;

padding− l e f t : 5 px ;

width : 265px ;

he ight : 290px ;

border : s o l i d 1px grey ;

}
div#content {

f loat : l e f t ;

margin−top :10 px ;

margin− l e f t : 30 px ;

width : 840px ;

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 72

he ight : 560px ;

border : s o l i d 1px grey ;

}
div#f o o t e r {

f loat : l e f t ;

margin−top :10 px ;

margin− l e f t : 30 px ;

width : 840px ;

he ight : 80px ;

border : s o l i d 1px grey ;

}
ul {
l i s t −s t y l e−type : none ;

}
div#advanced go{
margin−r i g h t : 20px ;

f loat : r i g h t ;

}
body{
font−f ami ly : ” C a l i b r i ” , Times , s e r i f ;

}

Program A.5: layout.css

A.6 searchResult.jsp

<%@ page language=” java ” import=” java . u t i l .∗ ” pageEncoding=”ISO−8859−1”%>

<%@ page language=” java ” import=” search .∗ ” %>

<%

Str ing path = reques t . getContextPath () ;

S t r ing basePath = reques t . getScheme ()+” :// ”+reques t . getServerName ()+

” : ”+reques t . ge tServerPort ()+ path+”/” ;

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 73

St r ing keyword = reques t . getParameter (”keyword”) ;

SearchManager sManager = new SearchManager () ;

ArrayList<search . SearchResult> s ea r chResu l t s = sManager . s earch (keyword) ;

%>

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01 T r a n s i t i o n a l //EN”>

<html>

<head>

<base h r e f=”<%=basePath%>”>

< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=” r e s u l t l a y o u t . c s s ” />

<t i t l e >Search Result</ t i t l e >

<meta http−equiv=”pragma” content=”no−cache ”>

<meta http−equiv=”cache−c o n t r o l ” content=”no−cache ”>

<meta http−equiv=” e x p i r e s ” content=”0”>

<meta http−equiv=”keywords” content=”keyword1 , keyword2 , keyword3”>

<meta http−equiv=” d e s c r i p t i o n ” content=” This i s my page”>

<!−−
< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=” s t y l e s . c s s ”>

−−>
</head>

<body>

<h1>Search Result</h1>

<%

for (int i = 0 ; i<s ea r chResu l t s . s i z e () ; i ++){
search . SearchResult s r = sea r chResu l t s . get (i) ;

%>

< l i ><a h r e f=” http://<%=

sr . getWebAddress()%>”><%=sr . getName () %></l i >

< l i ><%=sr . getCity ()%>,

<%=sr . getProv ince ()%>,

<%=sr . getCountry()%> <%=sr . getPostalCode () %></l i >

< l i ><%=sr . g e tDe s c r i p t i on () %></l i >

APPENDIX A. SOURCE CODE OF SEARCHING ENGINE IMPLEMENTATION 74

< l i ><%=sr . getWebAddress () %></l i >

<%

}
%>

</body>

</html>

Program A.6: searchResult.jsp

A.7 resultlayout.css

ul {
l i s t −s t y l e−type : none ;

}

Program A.7: resultlayout.css

Bibliography

[1] craigslist - company overview, 2008. http://www.hoovers.com/company/craigslist inc/rtsjrki-
1.html.

[2] Mysql vs. microsoft access, 2009. http://www.bestmysqlwebhosting.com/articles11.html.

[3] Mysql vs. ms sql, 2009. http://www.bestmysqlwebhosting.com/articles8.html.

[4] Mysql vs. oracle, 2009. http://www.bestmysqlwebhosting.com/articles10.html.

[5] Adobe fireworks - wikipedia, 2010. http://en.wikipedia.org/wiki/Adobe Fireworks.

[6] Apache lucene - features, 2010. http://lucene.apache.org/java/docs/features.html.

[7] Berners-lee biography at the world wide web consortium, 2010.
http://www.w3.org/People/Berners-Lee/Longer.html.

[8] MySQL 5.1 Reference Manual, 2010.

[9] Allen H. Dutoit Bernd Bruegge. Object-Oriented Software Engineering, Using UML,
Patterns, and Java, Second Edition. Pearson Education, Inc., 2004.

[10] Christopher Heng. 3 ways of putting a search engine on your website, 2009.
http://www.thesitewizard.com/archive/searchengine.shtml.

[11] Kishorekumar. Uml diagrams model of an accommodation online in hotels of particular
place, 2002.

[12] Rachna. Cool new features in adobe fireworks cs4.
http://www.entheosweb.com/fireworks/CS4/cool new features.asp.

[13] Arjen Lentz Robin Schumacher. Dispelling the myths. http://dev.mysql.com/tech-
resources/articles/dispelling-the-myths.html.

[14] Peter Pin shan Chen. The entity-relationship model: Toward a unified view of data,
1976. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.1085.

[15] Kelvin Tan. Lucene tutorial.com - basic concepts, 2004.
http://www.lucenetutorial.com/basic-concepts.html.

75

BIBLIOGRAPHY 76

[16] Tommi West. Design learning guide for fireworks: Using smart
guides and tooltips for precise positioning and layout, 2009.
http://www.adobe.com/devnet/fireworks/learning guide/design/design guide pt4.html.

[17] Kefu Zhao. Easylife - online community trading system: Easyweb server, rich client
designer and viewer implementation. Technical report, Simon Fraser University, 2010.

Index

Adobe Fireworks, 22
Apache Lucene, 6, 45

CSS, 7

Entity-Relationship Diagram, 37
ERD, 37, 38

HTML, 7

Index.jsp, 52
index.jsp, 66
IndexManager.java, 50, 57

JDBC, 47, 49
JSP, 7

layout.css, 52, 70
lucene-core-3.0.1.jar, 47, 49

Microsoft Access, 33
MS SQL, 34
MyEclipse, 6
MySQL, 6, 33
mysql-connector-java-5.1.12-bin.jar, 49

resultlayout.css, 52, 74

SearchManager.java, 51, 61
SearchResult.java, 64
searchResult.jsp, 52, 72

UML, 9
use case, 18
Use case diagram, 10

77

