Non-Deterministic Space
Non-deterministic Machines

Recall that if NT is a non-deterministic Turing Machine, then $NT(x)$ denotes the tree of configurations which can be entered with input x, and NT accepts x if there is some accepting path in $NT(x)$.

Definition

The space complexity of a non-deterministic Turing Machine NT is the function NSpace_{NT} such that $\text{NSpace}_{NT}(x)$ is the minimal number of cells visited in an accepting path of $NT(x)$ if there is one, otherwise it is the minimal number of cells in the rejecting paths.

(If not all paths of $NT(x)$ halt, then $\text{NSpace}_{NT}(x)$ is undefined)
Nondeterministic Space Complexity

Definition

For any function f, we say that the nondeterministic space complexity of a decidable language L is in $O(f)$ if there exists a nondeterministic Turing Machine NT which decides L, and constants n_0 and c such that for all inputs x with $|x| > n_0$

$$\text{NSpace}_{NT}(x) \leq cf(|x|)$$

Definition

The nondeterministic space complexity class $\text{NSPACE}[f]$ is defined to be the class of all languages with nondeterministic space complexity in $O(f)$
Definition of \(\text{NPSPACE} \)

\[
\text{NPSPACE} = \bigcup_{k \geq 0} \text{NSPACE}[n^k]
\]
Savitch’s Theorem

Unlike time, it can easily be shown that non-determinism does not reduce the space requirements very much:

Theorem (Savitch)
If \(s(n) \geq \log n \), then

\[
\text{NSPACE}[s] \subseteq \text{SPACE}[s^2]
\]

Corollary

\[\text{PSPACE} = \text{NPSPACE} \]
Proof (for $s(n) \geq n$)

- Let L be a language in $\text{NSPACE}[s]$.
- Let NT be a non-deterministic Turing Machine that decides L with space complexity s.
- Choose an encoding for the computation $NT(x)$ that uses $ks(|x|)$ symbols for each configuration.
- Let C_0 be the initial configuration, and C_a be the accepting configuration.
- Define a Boolean function $reach(C,C',j)$ which is true if and only if configuration C' can be reached from configuration C in at most 2^j steps.
- To decide whether or not $x \in L$ we must determine whether or not $reach(C_0,C_a,ks(|x|))$ is true.
We can calculate \(\text{reach}(C_0, C_a, ks(|x|)) \) in \(O(s(|x|)^2) \) space, using a divide-and-conquer algorithm:

\[
\text{reach}(C, C', j)
\]

1. If \(j = 0 \) then if \(C = C' \), or \(C' \) can be reached from \(C \) in one step, then return \text{true}, else return \text{false}.

2. For each configuration \(C'' \), if \(\text{reach}(C, C'', j-1) \) and \(\text{reach}(C'', C', j-1) \), then return \text{true}.

3. Return \text{false}

The depth of recursion is \(O(s(|x|)) \) and each recursive call requires \(O(s(|x|)) \) space for the parameters.
Logarithmic Space

Since polynomial space is so powerful, it is natural to consider more restricted space complexity classes.

Even linear space is enough to solve Satisfiability

Definition

\[L = \text{SPACE}[\log n] \]

\[\text{NL} = \text{NSPACE}[\log n] \]
Problems in L and NL

What sort of problems are in L and NL?

In logarithmic space we can store:

- a fixed number of counters (up to length of input)
- a fixed number of pointers to positions in the input string

Therefore in deterministic log-space we can solve problems that require a fixed number of counters and/or pointers for solving; in non-deterministic log-space we can solve problems that require a fixed number of counters/pointers for verifying a solution.
Examples (L)

Palindromes:

We need to keep two counter

\[\mathcal{L} = \{0^k 1^k \mid k \in \mathbb{N} \} \]

First count the number of 0s, then count 1s, subtracting from the previous number one by one. If the result is 0, accept; otherwise, reject.

Brackets (if brackets in an expression positioned correctly):

We need only a counter of brackets currently open. If this counter gets negative, reject; otherwise accept if and only if the last value of the counter is zero.
Examples (NL)

The first problem defined on this course was Reachability\(^1\)

This can be solved by the following non-deterministic algorithm:

- Define a counter and initialize it to the number of vertices in the graph
- Define a pointer to hold the "current vertex" and initialize it to the start vertex
- While the counter is non-zero
 - If the current vertex equals the target vertex, return yes
 - Non-deterministically choose a vertex which is connected to the current vertex
 - Update the pointer to this vertex and decrement the counter
- Return no

\(^1\)Also known as Path