Hierarchy Theorem

Proof
The properties of NL and coNL are similar to those of NP and coNP:

- if \(L \) is NL-complete then \(\overline{L} \) is coNL-complete
- if a coNL-complete problem belongs to NL then NL = coNL

Reachability is NL-complete.
Therefore it is enough to show that No-Reachability is in NL.

In order to do this, we have to find a non-deterministic algorithm that proves in log-space that there is a path between two specified vertices in a graph.

NL and coNL

For a language \(L \) over an alphabet \(\Sigma \), we denote \(\overline{L} \) the complement of \(L \), the language \(\Sigma^* - L \).

Definition
The class of languages \(L \) such that \(\overline{L} \) can be solved by a non-deterministic log-space Turing machine verifier is called coNL.

Theorem (Immerman)
\[\text{NL} = \text{coNL} \]

Counting the number of reachable vertices
Given a graph \(G \) and two its vertices \(s \) and \(t \):
let \(m \) be the number of vertices of \(G \)
First, we count the number \(c \) of vertices connected to \(s \) with a path of length at most \(i \), and \(c_i = |A_i| \)
Clearly, \(c_i = A_1 \subseteq A_2 \subseteq \ldots \subseteq A_i \) and \(c_i = c \)
We compute the numbers \(c_i, c_{i-1}, \ldots, c_1 \) inductively

Checking Reachability
Given \(G, s, t \) and \(c \):

- set \(m = c \)
- for every vertex \(v \) from \(G \) non-deterministically do or not do:
 - check whether or not \(v \) is reachable from \(s \) using non-deterministic walk
 - if not then reject
 - if yes then set \(m = m - 1 \)
 - if there is the edge \((w,v)\) then set \(c_{m} = c_{m} + 1 \) and leave the loop
- if \(m = 0 \) reject
- accept
Complexity Classes

We know a number of complexity classes and how they relate to each other:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq coNP \subseteq PSPACE \]

However, we do not know if any of them are different.

The amount of time/space available determines determinism and nondeterminism and known to be extremely difficult.

Complexity classes can be distinguished using another parameter:

Hierachy Theorem

Theorem

For any space constructable function \(f : \mathbb{N} \rightarrow \mathbb{N} \), there exists a language \(L \) that is decidable in space \(O(f(n)) \), but not in space \(o(f(n)) \).

Corollary

If \(f(n) \) and \(g(n) \) are space constructable functions, and \(f(n) = o(g(n)) \), then \(\text{SPACE}(f) \subseteq \text{SPACE}(g) \).

Corollary

\(L = \text{PSPACE} \)

Corollary

\(NL = \text{PSPACE} \)

Space Constructable Functions

Definition

A function \(f : \mathbb{N} \rightarrow \mathbb{N} \), where \(f(n) \geq \log n \), is called space constructable, if the function that maps \(1^n \) to the binary representation of \(f(n) \) is computable in space \(O(f(n)) \).

Examples

- polynomials
- \(n \log n \)
- \(2^n \), \(3^n \), ...
- ...

Proof Idea

Diagonalization Method:

- apply a Turing Machine to its own description
- revert the answer
- get a contradiction

In our case, a contradiction can be with the claim that something is computable within \(o(f(n)) \).

Let \(L = \{ M | M \text{ does not accept } \text{"M\text," in } f(n) \text{ space} \} \)

Proof

In order to kick in asymptotics, change the language

\(L = \{ M | M \text{ does not accept } \text{"M\text," in } f(n) \text{ space} \} \)

The following algorithm decides \(L \) in \(O(f(n)) \)

On input \(x \):

- Let \(n \) be the length of \(x \)
- Compute \(f(n) \) and mark off this much tape. If later stages ever attempt to use more space, reject
- If \(x \) is not of the form \(M10^n \) for some \(M \), reject
- Simulate \(M \) on \(x \) while counting the number of steps used in the simulation. If the count ever exceeds \(2^{n^2} \), accept
- If \(M \) accepts, reject. If \(M \) rejects, accept
The key stage is the simulation of \(M \)

Our algorithm simulates \(M \) with some loss of efficiency, because the alphabet of \(M \) can be arbitrary.

If \(M \) works in \(g(n) \) space then our algorithm simulates \(M \) using \(bg(n) \) space, where \(b \) is a constant factor depending on \(M \).

Thus, \(bg(n) \leq f(n) \).

Clearly, this algorithm works in \(O(f(n)) \) space.

Suppose that there exists a TM \(M \) deciding \(L \) in space \(g(n) = o(f(n)) \).

We can simulate \(M \) using \(bg(n) \) space.

There is \(n_0 \) such that for all inputs \(x \) with \(|x| > n_0 \) we have \(bg(|x|) < f(|x|) \).

Consider \(M(M(1^n)) \).

Since \(|M(1^n)| > n_0 \), the simulation of \(M \) either accepts or rejects on this input in space \(f(n) \):

- If the simulation accepts then \(M(M(1^n)) \) does not accept
- If the simulation rejects then \(M(M(1^n)) \) accepts

Time Hierarchy Theorem

Theorem
For any time constructable function \(f : \mathbb{N} \rightarrow \mathbb{N} \), there exists a language \(L \) that is decidable in time \(O(f(n)) \), but not in time \(f(n) \).

Corollary
If \(f(n) \) and \(g(n) \) are space constructable functions, and \(g(n) = \frac{f(n)}{\log f(n)} \) then \(\text{TIME}[f] \neq \text{TIME}[g] \).

The Class \(\text{EXPTIME} \)

Definition
\[
\text{EXPTIME} = \bigcup_{c \in \mathbb{N}} \text{TIME}[2^{cn}]
\]

Corollary
\(P \neq \text{EXPTIME} \)
ERROR: undefined
OFFENDING COMMAND:

STACK: