Parsing - Roadmap

- Parser:
 - decision procedure: builds a parse tree
- Top-down vs. bottom-up
- LL(1) – Deterministic Parsing
 - recursive-descent
 - table-driven
- LR(k) – Deterministic Parsing
 - LR(0), SLR(1), LR(1), LALR(1)
- Parsing arbitrary CFGs – Polynomial time parsing
Top-Down vs. Bottom Up

Grammar: \[S \rightarrow A \ B \]
\[A \rightarrow c \mid \epsilon \]
\[B \rightarrow cb \mid ca \]

Input String: ccbca

<table>
<thead>
<tr>
<th>Top-Down/leftmost</th>
<th>Bottom-Up/rightmost</th>
</tr>
</thead>
<tbody>
<tr>
<td>S ⇒ AB</td>
<td>S⇒AB</td>
</tr>
<tr>
<td>⇒ cB</td>
<td>A⇒c</td>
</tr>
<tr>
<td>⇒ ccbB</td>
<td>B⇒cbB</td>
</tr>
<tr>
<td>⇒ ccbca</td>
<td>B⇒ca</td>
</tr>
</tbody>
</table>

Bottom-up parsing overview

• Start from terminal symbols, search for a path to the start symbol
• Apply shift and reduce actions: postpone decisions
• LR parsing:
 – L: left to right parsing
 – R: rightmost derivation (in reverse or bottom-up)
• LR(0) → SLR(1) → LR(1) → LALR(1)
 – 0 or 1 or \(k \) lookahead symbols
Actions in Shift-Reduce Parsing

- **Shift**
 - add terminal to parse stack, advance input

- **Reduce**
 - If αw on stack, and $A \rightarrow w$, and there is a $\beta \in T^*$ such that $S \Rightarrow^*_{rm} \alpha A\beta \Rightarrow_{rm} \alpha w\beta$ then we can prune the handle w; we reduce αw to αA on the stack
 - αw is a viable prefix

- **Error**
- **Accept**

Questions

- **When to shift/reduce?**
 - What are valid handles?
 - Ambiguity: Shift/reduce conflict

- **If reducing, using which production?**
 - Ambiguity: Reduce/reduce conflict
Rightmost derivation for
\[\text{id + id * id} \]

\[
\begin{align*}
E & \rightarrow E + E & E & \Rightarrow E * E \\
E & \rightarrow E * E & \Rightarrow E * \text{id} \\
E & \rightarrow (E) & \Rightarrow E + E * \text{id} \\
E & \rightarrow -E & \Rightarrow E + \text{id} * \text{id} & \text{reduce with } E \rightarrow \text{id} \\
E & \rightarrow \text{id} & \Rightarrow \text{id} + \text{id} * \text{id} & \text{shift}
\end{align*}
\]

\[
E \Rightarrow_{\text{rm}}^* E + E \backslash \text{id}
\]

LR Parsing

- Table-based parser
 - Creates rightmost derivation (in reverse)
 - For “less massaged” grammars than LL(1)
- Data structures:
 - Stack of states/symbols \{s\}
 - Action table: \text{action}[s, a]; a \in T
 - Goto table: \text{goto}[s, X]; X \in N
Productions

1. \(T \rightarrow F \)
2. \(T \rightarrow TF \)
3. \(F \rightarrow id \)
4. \(F \rightarrow (T) \)

Action/Goto Table

<table>
<thead>
<tr>
<th>*</th>
<th>()</th>
<th>id</th>
<th>$</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>R1</td>
<td>R1</td>
<td>R1</td>
<td>R1</td>
<td>R1</td>
</tr>
<tr>
<td>1</td>
<td>S3</td>
<td></td>
<td></td>
<td></td>
<td>Acc!</td>
</tr>
<tr>
<td>2</td>
<td>S5</td>
<td>S8</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S5</td>
<td>S8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>R2</td>
<td>R2</td>
<td>R2</td>
<td>R2</td>
<td>R2</td>
</tr>
<tr>
<td>5</td>
<td>S5</td>
<td>S8</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S3</td>
<td>S7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R4</td>
<td>R4</td>
<td>R4</td>
<td>R4</td>
<td>R4</td>
</tr>
<tr>
<td>8</td>
<td>R3</td>
<td>R3</td>
<td>R3</td>
<td>R3</td>
<td>R3</td>
</tr>
</tbody>
</table>

Trace “(id)*id”

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(id)*id$</td>
<td>Shift S5</td>
</tr>
<tr>
<td>0 5</td>
<td>id)*id$</td>
<td>Shift S8</td>
</tr>
<tr>
<td>0 5 8</td>
<td>)*id$</td>
<td>Reduce 3 F→id, pop 8, goto [5,F]=1</td>
</tr>
<tr>
<td>0 5 1</td>
<td>)*id$</td>
<td>Reduce 1 T→F, pop 1, goto [5,T]=6</td>
</tr>
<tr>
<td>0 5 6</td>
<td>)*id$</td>
<td>Shift S7</td>
</tr>
<tr>
<td>0 5 6 7</td>
<td>*id$</td>
<td>Reduce 4 F→(T), pop 7 6 5, goto [0,F]=1</td>
</tr>
<tr>
<td>0 1</td>
<td>*id$</td>
<td>Reduce 1 T→F, pop 1, goto [0,T]=2</td>
</tr>
</tbody>
</table>
Trace "(id)*id"

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>* id $</td>
<td>Reduce 1 T→F, pop 1, goto [0,T]=2</td>
</tr>
<tr>
<td>0 2</td>
<td>* id $</td>
<td>Shift S3</td>
</tr>
<tr>
<td>0 2 3</td>
<td>* id $</td>
<td>Shift S8</td>
</tr>
<tr>
<td>0 2 3 8</td>
<td>$</td>
<td>Reduce 3 F→id, pop 8, goto [3,F]=4</td>
</tr>
<tr>
<td>0 2 3 4</td>
<td>$</td>
<td>Reduce 2 T→T*F, pop 4 3 2, goto [0,T]=2</td>
</tr>
<tr>
<td>0 2</td>
<td>$</td>
<td>Accept</td>
</tr>
</tbody>
</table>

Trace "(id)*id"

<table>
<thead>
<tr>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(id)*id</td>
<td></td>
</tr>
</tbody>
</table>

Productions

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T→F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T→T*F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F→id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F→(T)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R1</td>
<td>R1</td>
<td>R1</td>
</tr>
<tr>
<td>2</td>
<td>S3</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>S5</td>
<td>S8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>R2</td>
<td>R2</td>
<td>R2</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S5</td>
<td>S8</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>R3</td>
<td>R3</td>
<td>R3</td>
</tr>
<tr>
<td>3</td>
<td>R4</td>
<td>R4</td>
<td>R4</td>
</tr>
<tr>
<td>4</td>
<td>R5</td>
<td>R5</td>
<td>R5</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R1</td>
<td>R1</td>
<td>R1</td>
</tr>
<tr>
<td>2</td>
<td>S3</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>S5</td>
<td>S8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>R2</td>
<td>R2</td>
<td>R2</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S5</td>
<td>S8</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>R3</td>
<td>R3</td>
<td>R3</td>
</tr>
<tr>
<td>3</td>
<td>R4</td>
<td>R4</td>
<td>R4</td>
</tr>
<tr>
<td>4</td>
<td>R5</td>
<td>R5</td>
<td>R5</td>
</tr>
</tbody>
</table>

10/18/07
Tracing LR: action[s, a]

- **case shift** u:
 - push state u
 - read new a

- **case reduce** r:
 - lookup production r: X → Y₁..Yₖ;
 - pop k states, find state u
 - push goto[u, X]

- **case accept**: done
- **no entry in action table**: error
Configuration set

- Each set is a parser state
- We use the notion of a dotted rule or item:
 \[T \rightarrow T \ast \cdot F \]
- The dot is before \(F \), so we predict all rules with \(F \) as the left-hand side
 \[T \rightarrow T \ast \cdot F \]
 \[F \rightarrow \cdot (T) \]
 \[F \rightarrow \cdot \text{id} \]
- This creates a configuration set (or item set)

Closure

Closure property:
- If \(T \rightarrow X_1 \ldots X_i \cdot X_{i+1} \ldots X_n \) is in set, and \(X_{i+1} \) is a nonterminal, then \(X_{i+1} \rightarrow \cdot Y_1 \ldots Y_m \) is in the set as well for all productions \(X_{i+1} \rightarrow Y_1 \ldots Y_m \)
- Compute as fixed point
- The closure property creates a configuration set (item set) from a dotted rule (item).
Starting Configuration

• Augment Grammar with S’
• Add production S’ → S
• Initial configuration set is
 closure(S’ → • S)

Example: I = closure(S’ → • T)

S’ → • T
T → • T * F
T → • F
F → • id
F → • (T)

S’ → T
T → F | T * F
F → id | (T)
Successor(I, X)

Informally: “move by symbol X”
1. move dot to the right in all items where
dot is before X
2. remove all other items
 (viable prefixes only!)
3. compute closure

Successor Example

\[
\begin{align*}
I &= \{ S' \rightarrow \bullet T, \\
 &\quad T \rightarrow \bullet F, \\
 &\quad T \rightarrow \bullet T \ast F, \\
 &\quad F \rightarrow \bullet \text{id}, \\
 &\quad F \rightarrow \bullet (T) \} \\
\text{Compute Successor}(I, "\(")
\end{align*}
\]

\[
\{ F \rightarrow (\bullet T), T \rightarrow \bullet F, T \rightarrow \bullet T \ast F, \\
 F \rightarrow \bullet \text{id}, F \rightarrow \bullet (T) \}
\]
Sets-of-Items Construction

Family of configuration sets

function items(G')
 C = { closure({S' → • S}) };
 do foreach I ∈ C do
 foreach X ∈ (N U T) do
 C = C ∪ { Successor(I, X) };
 while C changes;

0: S' → • T
 T → • F
 T → • T * F
 F → • id
 F → • (T)

1: T → F •
2: S' → T •
 T → T * F •
3: T → • F
 F → • id
 F → • (T)
4: T → T * F •
5: F → (• T)
 T → • F
 T → • T * F
 F → • id
 F → • (T)
6: F → (T •)
7: F → (T) •
8: F → id •
LR(0) Construction

1. Construct \(F = \{ I_0, I_1, \ldots I_n \} \)
2. a) if \(\{ A \rightarrow \alpha \} \in I_i \) and \(A \neq S' \)
 then \(\text{action}[i, _] := \text{reduce } A \rightarrow \alpha \)
 b) if \(\{ S' \rightarrow S \} \in I_i \)
 then \(\text{action}[i,\$] := \text{accept} \)
 c) if \(\{ A \rightarrow \alpha \cdot a \beta \} \in I_i \) and \(\text{Successor}(I_i,a) = I_j \)
 then \(\text{action}[i,a] := \text{shift } j \)
3. if \(\text{Successor}(I_i,A) = I_j \) then \(\text{goto}[i,A] := j \)
LR(0) Construction (cont’d)

4. All entries not defined are errors
5. Make sure \(I_0 \) is the initial state

- Note: LR(0) always reduces if \(\{ A \to \alpha \circ \} \in I_i \), no lookahead
- Shift and reduce items can’t be in the same configuration set
 - Accepting state doesn’t count as reduce item
- At most one reduce item per set

Set-of-items with Epsilon rules
LR(0) conflicts:

\[
egin{align*}
S' & \rightarrow T \\
T & \rightarrow F \\
T & \rightarrow T \ast F \\
T & \rightarrow \text{id} \\
F & \rightarrow \text{id} \mid (T) \\
F & \rightarrow \text{id} = T \\
\end{align*}
\]

11: \(F \rightarrow \text{id} \cdot \) \\
\(F \rightarrow \text{id} \cdot = T \) \\
Shift/reduce conflict

1: \(F \rightarrow \text{id} \cdot \) \\
\(T \rightarrow \text{id} \cdot \) \\
Reduce/Reduce conflict

Need more lookahead: SLR(1)

LR(0) Grammars

- An LR(0) grammar is a CFG such that the LR(0) construction produces a table without conflicts (a deterministic pushdown automata)
- \(S \Rightarrow^*_{\text{rm}} \alpha A \beta \Rightarrow_{\text{rm}} \alpha w \beta \) and \(A \rightarrow w \) then we can prune the handle \(w \)
 - pruning the handle means we can reduce \(\alpha w \) to \(\alpha A \) on the stack
- Every viable prefix \(\alpha w \) can recognized using the DFA built by the LR(0) construction
LR(0) Grammars

- Once we have a viable prefix on the stack, we can prune the handle and then restart the DFA to obtain another viable prefix, and so on ...
- In LR(0) pruning the handle can be done without any look-ahead
 - this means that in the rightmost derivation,
 - \(S \Rightarrow r_m \alpha A \beta \Rightarrow r_m \alpha w \beta \) we reduce using a unique rule \(A \rightarrow w \) without ambiguity, and without looking at \(\beta \)
- No ambiguous context-free grammar can be LR(0)

LR(0) Grammars \(\subset \) Context-free Grammars

SLR(1) : Simple LR(1) Parsing

\[0: S' \rightarrow \bullet T \]
\[T \rightarrow \bullet F \]
\[T \rightarrow \bullet T * F \]
\[T \rightarrow \bullet C (T) \]
\[F \rightarrow \bullet id \]
\[F \rightarrow \bullet id ++ \]
\[F \rightarrow \bullet (T) \]
\[C \rightarrow \bullet id \]

\[1: F \rightarrow \bullet id \]
\[F \rightarrow \bullet id ++ \]
\[C \rightarrow \bullet id \]

Follow(\(F \)) = \{ *,), $ \}
Follow(\(C \)) = \{ (\}

action[1,*] = action[1,.)] = action[1,$] = Reduce \(F \rightarrow id \)
action[1,(] = Reduce \(C \rightarrow id \)
action[1,++] = Shift
SLR(1) Construction

1. Construct $F = \{I_0, I_1, \ldots, I_n\}$
2. a) if $\{A \to \alpha \star \} \in I_i$ and $A \neq S'$

 then $\text{action}[i, b] := \text{reduce } A \to \alpha$

 for all $b \in \text{Follow}(A)$

 b) if $\{S' \to S \star \} \in I_i$

 then $\text{action}[i, S] := \text{accept}$

 c) if $\{A \to \alpha \star a \beta\} \in I_i$ and $\text{Successor}(I_i, a) = I_j$

 then $\text{action}[i, a] := \text{shift } j$

3. if $\text{Successor}(I_i, A) = I_j$ then $\text{goto}[i, A] := j$

SLR(1) Construction (cont’d)

4. All entries not defined are errors
5. Make sure I_0 is the initial state

- Note: SLR(1) only reduces
 $\{A \to \alpha \star \}$ if lookahead in $\text{Follow}(A)$
- Shift and reduce items or more than one reduce item can be in the same configuration set as long as lookaheads are disjoint
SLR(1) Conditions

• A grammar is SLR(1) if for each configuration set:
 – For any item \{A \rightarrow \alpha \cdot x \beta: x \in T\} there is no \{B \rightarrow \gamma \cdot: x \in \text{Follow}(B)\}
 – For any two items \{A \rightarrow \alpha \cdot\} and \{B \rightarrow \beta \cdot\}
 \text{Follow}(A) \cap \text{Follow}(B) = \emptyset

LR(0) Grammars \subset SLR(1) Grammars

Is this grammar SLR(1)?
SLR limitation: lack of context

Input: \text{id} = \text{id}

Follow(R) = \{ =, $ \}

Solution: Canonical LR(1)

- Extend definition of configuration
 - Remember lookahead
- New closure method
- Extend definition of Successor
LR(1) Configurations

• \([A \rightarrow \alpha \cdot \beta, a] \) for \(a \in T\) is valid for a viable prefix \(\delta \alpha\) if there is a rightmost derivation:
 \(S \Rightarrow^* \delta A \eta \Rightarrow^* \delta \alpha \beta \eta\) and
 \((\eta = a \gamma)\) or \((\eta = \varepsilon\) and \(a = \$$)\)

• Notation: \([A \rightarrow \alpha \cdot \beta, a/b/c]\)
 – if \([A \rightarrow \alpha \cdot \beta, a]\), \([A \rightarrow \alpha \cdot \beta, b]\), \([A \rightarrow \alpha \cdot \beta, c]\)
 are valid configurations

LR(1) Configurations

\[
\begin{align*}
S & \rightarrow B \hspace{1em} B \\
B & \rightarrow a \hspace{1em} B \mid b \\
\text{• } S & \Rightarrow^*_{\text{rm}} aaBab \Rightarrow_{\text{rm}} aaaBab \\
\text{• Item } [B \rightarrow a \cdot B, a] \text{ is valid for viable prefix } aaa \\
\text{• } S & \Rightarrow^*_{\text{rm}} BaB \Rightarrow_{\text{rm}} BaaB \\
\text{• Also, item } [B \rightarrow a \cdot B, \$$] \text{ is valid for viable prefix } Baa
\end{align*}
\]
LR(1) Closure

Closure property:
• If \([A \rightarrow \alpha \cdot B\beta, a]\) is in set, then
 \([B \rightarrow \cdot \gamma, b]\) is in set if \(b \in \text{First}(\beta a)\)
• Compute as fixed point
• Only include contextually valid lookaheads to guide reducing to B

Starting Configuration

• Augment Grammar with \(S'\) just like for LR(0), SLR(1)
• Initial configuration set is
 \(I = \text{closure}([S' \rightarrow \cdot S, \$])\)
Example: closure([S’ → • S, $])

[S’ → • S, $]
[S → • L = R, $]
[S → • R, $]
[L → • * R, =]
[L → • id, =]
[R → • L, $]
[L → • *R, $]
[L → • id, $]

LR(1) Successor(C, X)

• Let I = [A → α•Bβ, a] or [A → α•bβ, a]
• Successor(I, B)
 = closure([A → αB • β, a])
• Successor(I, b)
 = closure([A → αb • β, a])
LR(1) Example

0: \(S' \rightarrow S, \) $
 S \rightarrow L = R, $
 S \rightarrow R, $
 L \rightarrow * R, =/\$
 L \rightarrow \text{id}, =/\$
 R \rightarrow L, $

1: L \rightarrow \text{id} \cdot, $/=

2: S \rightarrow L \cdot = R, $
 R \rightarrow L \cdot, $

3: S \rightarrow L = R, $
 R \rightarrow L, $
 L \rightarrow * R, $
 L \rightarrow \text{id}, $

4: L \rightarrow \text{id} \cdot, $

5: R \rightarrow L \cdot, $

6: S \rightarrow L = R \cdot, $

7: S' \rightarrow S \cdot, $

8: L \rightarrow * \cdot R, $
 R \rightarrow L, $
 L \rightarrow * R, $
 L \rightarrow \text{id}, $

9: L \rightarrow * R \cdot, $

LR(1) Example (contd)

3: S \rightarrow L = \cdot R, $
 R \rightarrow \cdot L, $
 L \rightarrow * R, $
 L \rightarrow \text{id}, $

4: L \rightarrow \text{id} \cdot, $

5: R \rightarrow L \cdot, $

8: L \rightarrow * \cdot R, $
 R \rightarrow \cdot L, $
 L \rightarrow * R, $
 L \rightarrow \text{id}, $

9: L \rightarrow * R \cdot, "$
LR(1) Example (contd)

0: $S' \rightarrow \bullet S, \$
 S \rightarrow \bullet L = R, \$
 S \rightarrow \bullet R, \$
 L \rightarrow \bullet * R, =/$
 L \rightarrow \bullet id, =/$
 R \rightarrow \bullet L, \$

1: L \rightarrow id, =/

2: S \rightarrow R, \$

3: L \rightarrow \bullet L, =/
 L \rightarrow \bullet * R, =/
 L \rightarrow \bullet id, =/

4: R \rightarrow \bullet L, =/
 L \rightarrow \bullet * R, =/

5: S \rightarrow R\bullet, \$

6: R \rightarrow L, =/

7: Acc

8: S \rightarrow L = R
 R \rightarrow L, =/

9: S \rightarrow R

10: S \rightarrow L = R
 R \rightarrow id, =/

11: R \rightarrow L, =/

12: L \rightarrow \bullet * R, =/

13: R \rightarrow L, =/

Productions

- 1: $S \rightarrow L = R$
- 2: $S \rightarrow R$
- 3: $L \rightarrow \bullet * R$
- 4: $L \rightarrow \bullet id$
- 5: $R \rightarrow L$

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>=</th>
<th>*</th>
<th>$</th>
<th>S</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S1</td>
<td></td>
<td></td>
<td>S10</td>
<td>7</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>R4</td>
<td></td>
<td></td>
<td>R4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S3</td>
<td></td>
<td></td>
<td>R5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S4</td>
<td></td>
<td></td>
<td>S8</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>R4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Acc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>S4</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>S1</td>
<td></td>
<td></td>
<td>S10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R5</td>
<td></td>
<td></td>
<td>R5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>R3</td>
<td></td>
<td></td>
<td>R3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>R2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LR(1) Construction

1. Construct \(F = \{ I_0, I_1, \ldots I_n \} \)
2. a) if \([A \rightarrow \alpha\bullet, a] \in I_i\) and \(A \neq S'\)
 then \(\text{action}[i, a] := \text{reduce}\ A \rightarrow \alpha\)
 b) if \([S' \rightarrow S\bullet, \$] \in I_i\)
 then \(\text{action}[i, \$] := \text{accept}\)
 c) if \([A \rightarrow \alpha\bullet a\beta, b] \in I_i\) and \(\text{Successor}(I_i, a) = I_j\)
 then \(\text{action}[i, a] := \text{shift} j\)
3. if \(\text{Successor}(I_i, A) = I_j\) then \(\text{goto}[i, A] := j\)

LR(1) Construction (cont’d)

4. All entries not defined are errors
5. Make sure \(I_0\) is the initial state

- Note: LR(1) only reduces using \(A \rightarrow \alpha\) for \([A \rightarrow \alpha\bullet, a]\) if a follows
- LR(1) states remember context by virtue of lookahead
- Possibly many states!
 - LALR(1) combines some states
LR(1) Conditions

• A grammar is LR(1) if for each configuration set holds:
 – For any item \([A \rightarrow \alpha x \beta, a]\) with \(x \in T\) there is no
 \([B \rightarrow \gamma \cdot, x]\)
 – For any two complete items \([A \rightarrow \gamma \cdot, a]\) and
 \([B \rightarrow \beta \cdot, b]\) it follows \(a\) and \(a \neq b\).

• Grammars:
 – \(LR(0) \subset SLR(1) \subset LR(1) \subset LR(k)\)

• Languages expressible by grammars:
 – \(LR(0) \subset SLR(1) \subset LR(1) = LR(k)\)

Canonical LR(1) Recap

• LR(1) uses left context, current handle and lookahead to decide when to reduce or shift
• Most powerful parser so far
• LALR(1) is practical simplification with fewer states
Merging States in LALR(1)

• \(S' \rightarrow S \)
 \(S \rightarrow XX \)
 \(X \rightarrow aX \)
 \(X \rightarrow b \)

• **Same Core Set**

• **Different lookaheads**

<table>
<thead>
<tr>
<th>3: (X \rightarrow a \cdot X, a/b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X \rightarrow \cdot a X, a/b)</td>
</tr>
<tr>
<td>(X \rightarrow \cdot b, a/b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6: (X \rightarrow a \cdot X,) $</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X \rightarrow \cdot a X,) $</td>
</tr>
<tr>
<td>(X \rightarrow \cdot b,) $</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>36: (X \rightarrow a \cdot X, a/b/$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X \rightarrow \cdot a X, a/b/$</td>
</tr>
<tr>
<td>(X \rightarrow \cdot b, a/b/$</td>
</tr>
</tbody>
</table>

R/R conflicts when merging

• \(B \rightarrow d \)
 \(B \rightarrow f X g \)
 \(X \rightarrow ... \)

• If R/R conflicts are introduced, grammar is not LALR(1)!

<table>
<thead>
<tr>
<th>2: (B \rightarrow d \cdot, c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \rightarrow f X g \cdot, e)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4: (B \rightarrow d \cdot, g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \rightarrow f X g \cdot, c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24: (B \rightarrow d \cdot, c/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \rightarrow f X g \cdot, c/e)</td>
</tr>
</tbody>
</table>
LALR(1)

- LALR(1) Condition:
 - Merging in this way does not introduce reduce/reduce conflicts
 - Shift/reduce can’t be introduced
- Merging brute force or step-by-step
- More compact than canonical LR, like SLR(1)
- More powerful than SLR(1)
 - Not always merge to full Follow Set

S/R & ambiguous grammars

- Lx(k) Grammar vs. Language
 - Grammar is Lx(k) if it can be parsed by Lx(k) method – according to criteria that is specific to the method.
 - A Lx(k) grammar may or may not exist for a language.
- Even if a given grammar is not LR(k), shift/reduce parser can sometimes handle them by accounting for ambiguities
 - Example: ‘dangling’ else
 - Preferring shift to reduce means matching inner ‘if’
Dangling ‘else’

1. \(S \rightarrow \text{if } E \text{ then } S \)
2. \(S \rightarrow \text{if } E \text{ then } S \text{ else } S \)

- Viable prefix “if E then if E then S”
 - Then read else
- Shift “else” (means go for 2)
- Reduce (reduce using production #1)
- NB: dangling else as written above is ambiguous
 - NB: Ambiguity can be resolved, but there’s still no LR(k) grammar

Precedence & Associativity

- Consider \(E \rightarrow E - E | E * E | \text{id} \)

<table>
<thead>
<tr>
<th>Reduce</th>
<th>Shift</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>(E)</td>
<td>(E)</td>
</tr>
<tr>
<td>(E)</td>
<td>(E)</td>
<td>(E)</td>
</tr>
<tr>
<td>(E)</td>
<td>(E)</td>
<td>(E)</td>
</tr>
<tr>
<td>(E - E \cdot \ast)</td>
<td>(E)</td>
<td>(E - E \cdot \ast)</td>
</tr>
<tr>
<td>(\text{id - id} \ast \text{id})</td>
<td>(\text{id - id} \ast \text{id})</td>
<td>(\text{id - id} \ast \text{id})</td>
</tr>
</tbody>
</table>
Precedence Relations

• Let $A \rightarrow w$ be a rule in the grammar
• And b is a terminal
• In some state q of the LR(1) parser there is a shift-reduce conflict:
 – either reduce with $A \rightarrow w$ or shift on b
• Write down a rule, either:
 $A \rightarrow w, < b$ or $A \rightarrow w, > b$

Precedence Relations

• $A \rightarrow w, < b$ means rule has less precedence and so we shift if we see b in the lookahead
• $A \rightarrow w, > b$ means rule has higher precedence and so we reduce if we see b in the lookahead
• If there are multiple terminals with shift-reduce conflicts, then we list them all:
 $A \rightarrow w, > b, < c, > d$
Precedence Relations

- Consider the grammar
 \[E \rightarrow E + E | E * E | (E) | a \]
- Assume left-association so that \(E+E+E \) is interpreted as \((E+E)+E\)
- Assume multiplication has higher precedence than addition
- Then we can write precedence rules/relns:
 \[E \rightarrow E + E, > +, < * \]
 \[E \rightarrow E * E, > +, > * \]

Precedence & Associativity

\[E \rightarrow E + E, > +, < * \]
\[E \rightarrow E * E, > +, > * \]
Handling S/R & R/R Conflicts

• Have a conflict?
 – No? – Done, grammar is compliant.
• Already using most powerful parser available?
 – No? – Upgrade and goto 1
• Can the grammar be rearranged so that the conflict disappears?
 – While preserving the language!

Conflicts revisited (cont’d)

• Can the grammar be rearranged so that the conflict disappears?
 – No?
 • Is the conflict S/R and does shift-to-reduce preference yield desired result?
 – Yes: Done. (Example: dangling else)
 • Else: Bad luck
 – Yes: Is it worth it?
 • Yes, resolve conflict.
 • No: live with default or specified conflict resolution (precedence, associativity)
Compiler (parser) compilers

- Rather than build a parser for a particular grammar (e.g. recursive descent), write down a grammar as a text file
- Run through a compiler compiler which produces a parser for that grammar
- The parser is a program that can be compiled and accepts input strings and produces user-defined output

- For LR parsing, all it needs to do is produce action/goto table
 - Yacc (yet another compiler compiler) was distributed with Unix, the most popular tool. Uses LALR(1).
 - Many variants of yacc exist for many languages
- As we will see later, translation of the parse tree into machine code (or anything else) can also be written down with the grammar
- Handling errors and interaction with the lexical analyzer have to be precisely defined
Parsing - Summary

- Top-down vs. bottom-up
- Lookahead: FIRST and FOLLOW sets
- LL(1) – Parsing: $O(n)$ time complexity
 - recursive-descent and table-driven predictive parsing
- LR(k) – Parsing: $O(n)$ time complexity
 - LR(0), SLR(1), LR(1), LALR(1)
- Resolving shift/reduce conflicts
 - using precedence, associativity