
1

10/22/07 1

CMPT 379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

10/22/07 2

Parsing CFGs

• Consider the problem of parsing with
arbitrary CFGs

• For any input string, the parser has to
produce a parse tree

• The simpler problem: print yes if the input
string is generated by the grammar, print no
otherwise

• This problem is called recognition

2

10/22/07 3

CKY Recognition Algorithm

• The Cocke-Kasami-Younger algorithm
• As we shall see it runs in time that is

polynomial in the size of the input
• It takes space polynomial in the size of the

input
• Remarkable fact: it can find all possible

parse trees (exponentially many) in
polynomial time

10/22/07 4

Chomsky Normal Form

• Before we can see how CKY works, we
need to convert the input CFG into
Chomsky Normal Form

• CNF means that the input CFG G is
converted to a new CFG G’ in which all
rules are of the form:
A → B C
A → a

3

10/22/07 5

Epsilon Removal

• First step, remove epsilon rules
A → B C
C → ε | C D | a
D → b B → b

• After ε-removal:
A → B | B C D | B a | BC
C → D | C D D | a D | C D | a
D → b B → b

10/22/07 6

Removal of Chain Rules

• Second step, remove chain rules
A → B C | C D C
C → D | a
D → d B → b

• After removal of chain rules:
A → B a | B D | a D a | a D D | D D a | D D D
D → d B → b

4

10/22/07 7

Eliminate terminals from RHS

• Third step, remove terminals from the rhs of
rules
A → B a C d

• After removal of terminals from the rhs:
A → B N1 C N2
N1 → a
N2 → d

10/22/07 8

Binarize RHS with Nonterminals

• Fourth step, convert the rhs of each rule to have
two non-terminals
A → B N1 C N2
N1 → a
N2 → d

• After converting to binary form:
A → B N3 N1 → a
N3 → N1 N4 N2 → d
N4 → C N2

5

10/22/07 9

CKY algorithm

• We will consider the working of the
algorithm on an example CFG and input
string

• Example CFG:
S → A X | Y B
X → A B | B A Y → B A
A → a B → a

• Example input string: aaa

10/22/07 10

CKY Algorithm

A, B
A → a
B → a

X, Y
X → A B | B A
Y → B A

A, B
A → a
B → a

S
S → A(0,1) X(1,3)

S → Y(0,2) B(2,3)

X, Y
X → A B | B A
Y → B A

A, B
A → a
B → a

a a a

0

1

2

0 1 2 3

6

10/22/07 11

Parse trees

S

BY

B A

aa a

S

A X

A B

a a a

S

A X

B A

a a a

10/22/07 12

CKY Algorithm
Input string input of size n
Create a 2D table chart of size n2

for i=0 to n-1
chart[i][i+1] = A if there is a rule A → a and input[i]=a

for j=2 to N
for i=j-2 downto 0

for k=i+1 to j-1
chart[i][j] = A if there is a rule A → B C and

chart[i][k] = B and chart[k][j] = C
return yes if chart[0][n] has the start symbol
else return no

7

10/22/07 13

CKY algorithm summary

• Parsing arbitrary CFGs
• For the CKY algorithm, the time complexity is

O(|G|2 n3)
• The space requirement is O(n2)
• The CKY algorithm handles arbitrary ambiguous

CFGs
• All ambiguous choices are stored in the chart
• For compilers we consider parsing algorithms for

CFGs that do not handle ambiguous grammars

10/22/07 14

GLR – Generalized LR Parsing
• Works for any CFG (just like CKY algorithm)

– Masaru Tomita [1986]
• If you have shift/reduce conflict, just clone your stack and

shift in one clone, reduce in the other clone
– proceed in lockstep
– parser that get into error states die
– merge parsers that lead to identical reductions (graph

structured stack)
• Careful implementation can provide O(n3) bound
• However for some grammars, parser will be exponential in

grammar size

8

10/22/07 15

Parsing - Summary

• Parsing arbitrary CFGs using the CKY
algorithm: O(n3) time complexity

• Chomsky Normal Form (CNF) provides the
n3 time bound

• LR parsers can be extended to Generalized
LR parsers to deal with arbitrary CFGs,
complexity is still O(n3)

10/22/07 16

Parsing - Additional Results

• O(n2) time complexity for linear grammars
– All rules are of the form S → aSb or S → a
– Reason for O(n2) bound is the linear grammar normal

form: A → aB, A → Ba, A → B, A → a
• Left corner parsers

– extension of top-down parsing to arbitrary CFGs
• Earley’s parsing algorithm

– O(n3) worst case time for arbitrary CFGs just like CKY
– O(n2) worst case time for unambiguous CFGs
– O(n) for specific unambiguous grammars
 (e.g. S → aSa | bSb | ε)

