CMPT-379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

09/10/07
We ask the question: *Does a particular formal language describe some key aspect of a programming language?*

Then we find out if that language *isn’t* in a particular language class.
For example, if we abstract some aspect of the programming language structure to the formal language:

\{ww^R \mid w \in \{a, b\}^*, w^R \text{ is the reverse of } w\}

we can then ask if this language is a regular language.

If this is false, i.e. the language is not regular, then we have to go beyond regular languages.
Recursion in Regular Languages

Consider a regular expression for arithmetic expressions:
- $2 + 3 \times 4$
- $8 \times 10 + -24$
- $2 + 3 \times -2 + 8 + 10$

Can we compute the meaning of these expressions?
Recursion in Regular Languages

- Construct the finite state automata and associate the meaning with the state sequence
- However, this solution is missing something crucial about arithmetic expressions – *what is it?*
Do Programming Languages belong to Regular Languages

- Consider the following arithmetic expressions
 - \(((2) + (3)) \times (4))
 - \(((8) \times ((10) + (−24)))
- Map (→ a and) → b. Map everything else to ε (keep only the tree structure)
- This results in strings like \(aaababbabb\) and \(aabaababbb\)
- What is a good description of this language?
- Let’s call it \(L = \{a^n b^n : n \geq 0\}\) or simply \(a^n b^n\) for short.
Pumping Lemma proofs

- Is L a regular language?
- For any infinite set of strings generated by a finite-state machine if you consider a string that is long enough from this set, there has to be a loop which visits the same state at least twice (from the pigeonhole principle)
- Thus, in a regular language L, there are strings x, y, z such that $xy^iz \in L$ for $i \geq 0$ where $y \neq \epsilon$
- We can use this basic characteristic of regular languages to show that $a^n b^n$ cannot be regular
The Chomsky Hierarchy

- **unrestricted** or **type-0** grammars, generate the *recursively enumerable* languages, automata equals *Turing machines*

- **context-sensitive** or **type-1** grammars, generate the *context-sensitive* languages, automata equals *Linear Bounded Automata*

- **context-free** or **type-2** grammars, generate the *context-free* languages, automata equals *Pushdown Automata*

- **regular** or **type-3** grammars, generate the *regular* languages, automata equals *Finite-State Automata*
A system of grammars $G = (N, T, P, S)$

- T is a set of symbols called terminal symbols. Also called the alphabet Σ.

- N is a set of non-terminals, where $N \cap T = \emptyset$

 Some notation: $\alpha, \beta, \gamma \in (N \cup T)^*$

 N is sometimes called the set of variables V.

- P is a set of production rules that provide a finite description of an infinite set of strings (a language).

- S is the start non-terminal symbol (similar to the start state in a FSA).
Languages

- Language defined by G: $L(G)$
 - $L(G)$: set of strings $w \in T^*$ derived from S
 - $S \Rightarrow^+ w$ (derives in 1 or more steps using rules in P)
 - w is a sentence of G
 - Sentential form: $S \Rightarrow^+ \alpha$ and α contains a mix of terminals and non-terminals

- Two grammars G_1 and G_2 are equivalent if $L(G_1) = L(G_2)$
The Chomsky Hierarchy: $G = (N, T, P, S)$ where, $\alpha, \beta, \gamma \in (N \cup T)^*$

- **unrestricted** or **type-0** grammars: $\alpha \rightarrow \gamma$, such that $\alpha \neq \varepsilon$
- **context-sensitive** or **type-1** grammars: $\alpha \rightarrow \gamma$, where $|\gamma| \geq |\alpha|$

 CSG Normal Form: $\alpha A \beta \rightarrow \alpha \gamma \beta$, such that $\gamma \neq \varepsilon$ and $S \rightarrow \varepsilon$ if $\varepsilon \in L(G)$
- **context-free** or **type-2** grammars: $A \rightarrow \gamma$
- **regular** or **type-3** grammars: $A \rightarrow a B$ or $A \rightarrow a$
Examples of Languages in the Chomsky Hierarchy

- **context-sensitive** grammars: 0^i, i is a prime number
- **indexed** grammars: $0^n1^n2^n \ldots m^n$, for any fixed m and $n \geq 0$
- **context-free** grammars: 0^n1^n for $n \geq 0$; also $\{0^n1^n2^m\} \cup \{0^m1^n2^n\}$ which is inherently ambiguous, i.e. no unambiguous CFG exists!
- **deterministic context-free** grammars: $S' \rightarrow S c$, $S \rightarrow S A \mid A$, $A \rightarrow a S b \mid ab$: the language of "balanced parentheses"
- **regular** grammars: $(0|1)^*00(0|1)^*$
<table>
<thead>
<tr>
<th>Language</th>
<th>Automaton</th>
<th>Grammar</th>
<th>Recognition</th>
<th>Dependency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursively Enumerably</td>
<td>Turing Machine</td>
<td>Unrestricted</td>
<td>Undecidable</td>
<td>Arbitrary</td>
</tr>
<tr>
<td>Languages</td>
<td></td>
<td>Baa → A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context-Sensitive</td>
<td>Linear-Bounded</td>
<td>Context-Sensitive</td>
<td>NP-Complete</td>
<td>Crossing</td>
</tr>
<tr>
<td>Languages</td>
<td></td>
<td>At → aA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context-Free</td>
<td>Pushdown (stack)</td>
<td>Context-Free</td>
<td>Polynomial</td>
<td>Nested</td>
</tr>
<tr>
<td>Languages</td>
<td></td>
<td>S → gSc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>Finite-State Machine</td>
<td>Regular</td>
<td>Linear</td>
<td>Strictly Local</td>
</tr>
<tr>
<td>Languages</td>
<td></td>
<td>A → cA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Given grammar G and input x, provide algorithm for: Is $x \in L(G)$?

- **unrestricted**: undecidable
- **context-sensitive**: $\text{NSPACE}(n)$ – linear non-deterministic space
- **indexed grammars**: NP-Complete
- **context-free**: $O(n^3)$
- **deterministic context-free**: $O(n)$
- **regular grammars**: $O(n)$
Summary

- Aspects of PL structure cannot be represented by FSAs
- We can show that a language is not regular.
- If such a language is needed for our programming language then we have to use something more powerful than a regular language
- Chomsky hierarchy: from FSAs to Turing machines
- Context-free grammars (seems sufficient for PLs) but problems with ambiguity