Code Optimization

- There is no fully optimizing compiler O
- Let’s assume O exists: it takes a program P and produces output $\text{Opt}(P)$ which is the smallest possible
- Imagine a program Q that produces no output and never terminates, then $\text{Opt}(Q)$ could be:
 \[
 \text{L1: goto L1}
 \]
- Then to check if a program P never terminates on some inputs, check if $\text{Opt}(P(i))$ is equal to $\text{Opt}(Q)$
- Full Employment Theorem for Compiler Writers, see Rice(1953)
Optimizations

• Non-Optimizations
• Correctness of optimizations
 – Optimizations must not change the meaning of the program
• Types of optimizations
 – Local optimizations
 – Global dataflow analysis for optimization
 – Static Single Assignment (SSA) Form
• Amdahl’s Law

Non-Optimizations

enum { GOOD, BAD }; extern int test_condition();
void check() {
 int rc;
 rc = test_condition();
 if (rc != GOOD) {
 exit(rc);
 }
}

Which version of check runs faster?
Types of Optimizations

• High-level optimizations
 – function inlining
• Machine-dependent optimizations
 – e.g., peephole optimizations, instruction scheduling
• Local optimizations or Transformations
 – within basic block

Types of Optimizations

• Global optimizations or Data flow Analysis
 – across basic blocks
 – within one procedure (intraprocedural)
 – whole program (interprocedural)
 – pointers (alias analysis)
Maintaining Correctness

- What does this program output?

 3

 Not:

 $ decafcc byzero.decaf

 Floating exception

void main() {
 int x;
 if (false) {
 x = 3/(3-3);
 } else {
 x = 3;
 }
 callout(“print_int”, x);
}

branch delay slot (cf. load delay slot)

Peephole Optimization

- Redundant instruction elimination
 - If two instructions perform that same function and are in the same basic block, remove one
 - Redundant loads and stores
 li $t0, 3
 li $t0, 4
 - Remove unreachable code
 li $t0, 3
 goto L2
 ... (all of this code until next label can be removed)
Peephole Optimization

- Flow control optimization
 goto L1
 L1: goto L2
- Algebraic simplification
- Reduction in strength
 - Use faster instructions whenever possible
- Use of Machine Idioms
- Filling delay slots

Constant folding & propagation

- Constant folding
 - compute expressions with known values at compile time
- Constant propagation
 - if constant assigned to variable, replace uses of variable with constant unless variable is reassigned
Constant folding & propagation

• Copy Propagation

\[
\begin{align*}
 a &:= d + e \\
 b &:= d + e \\
 c &:= d + e \\
 t &:= d + e \\
 a &:= t \\
 b &:= t \\
 c &:= t
\end{align*}
\]

Transformations

• Structure preserving transformations
• Common subexpression elimination

\[
\begin{align*}
 a &:= b + c \\
 b &:= a - d \\
 c &:= b + c \\
 d &:= a - d \ (\Rightarrow b)
\end{align*}
\]
Transformations

- Dead-code elimination (combines copy propagation with removal of unreachable code)

  ```
  if (debug) { f(); } /* debug := false (as a constant) */
  if (false) { f(); } /* constant folding */
  using deadcode elimination, code for f() is removed
  x := t3
  t4 := x becomes t4 := t3
  ```

Transformations

- Renaming temporary variables

 \[t1 := b+c \] can be changed to \[t2 := b+c \]

 replace all instances of \(t1 \) with \(t2 \)

- Interchange of statements

 \[t1 := b+c \] \[t2 := x+y \]

 \[t2 := x+y \] can be converted to \[t1 := b+c \]
Transformations

- Algebraic transformations
 \[d := a + 0 \implies a \]
 \[d := d \times 1 \implies \text{eliminate} \]
- Reduction of strength
 \[d := a \times a \]

Control Flow Graph (CFG)

```c
int main() {
    extern int f(int);
    int i;
    int *a;
    for (i = 0; i < 10; i = i + 1) {
        a[i] = f(i);
    }
}
```
Control Flow Graph in TAC

main:
 i = 0
L0:
 t1 = 10
 t2 = i < t1
 ifFalse t2 Goto L1
 t3 = 4
 t4 = t3 + i
 t5 = a + t4
 param i
t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0
L1:
 return

Dataflow Analysis

- \(S \rightarrow id := E \)
- \(S \rightarrow S ; S \)
- \(S \rightarrow \text{if } E \text{ then } S \text{ else } S \)
- \(S \rightarrow \text{do } S \text{ while } E \)
- \(E \rightarrow id + id \)
- \(E \rightarrow id \)
Dataflow Analysis

S ; S if E then S else S do S while E

Reaching definitions

d: a := b+c

\[
\text{gen}[S] = \{ d \} \\
\text{kill}[S] = \text{def}(a) - \{ d \} \\
\text{out}[S] = \text{gen}[S] \cup (\text{in}[S] - \text{kill}[S])
\]
Reaching definitions

\[\text{gen}[S] = \text{gen}[S2] \cup (\text{gen}[S1] - \text{kill}[S2]) \]

\[\text{kill}[S] = \text{kill}[S2] \cup (\text{kill}[S1] - \text{gen}[S2]) \]

\[\text{in}[S1] = \text{in}[S] \]

\[\text{in}[S2] = \text{out}[S1] \]

\[\text{out}[S] = \text{out}[S2] \]

Reaching definitions

\[\text{gen}[S] = \text{gen}[S1] \cup \text{gen}[S2] \]

\[\text{kill}[S] = \text{kill}[S1] \cap (\text{kill}[S1] - \text{gen}[S2]) \]

\[\text{in}[S1] = \text{in}[S] \]

\[\text{in}[S2] = \text{in}[S] \]

\[\text{out}[S] = \text{out}[S1] \cup \text{out}[S2] \]
Reaching definitions

\[\text{gen}[S] = \text{gen}[S1] \]
\[\text{kill}[S] = \text{kill}[S1] \]
\[\text{in}[S1] = \text{in}[S] \cup \text{gen}[S1] \]
\[\text{out}[S] = \text{out}[S1] \]

Iteratively find \text{out}[S] (fixed point)

\[\text{out}[S1] = \text{gen}[S1] \cup (\text{in}[S1] - \text{kill}[S1]) \]

Reaching definitions

\[B1 \]
\[\begin{align*}
 d1: & i := m-1 \\
 d2: & j := n \\
 d3: & a := u1
\end{align*} \]
\[\text{gen}[B1] = \{ d1, d2, d3 \} \]
\[\text{kill}[B1] = \{ d4, d5, d6, d7 \} \]

\[B2 \]
\[\begin{align*}
 d4: & i := i+1 \\
 d5: & j := j-1
\end{align*} \]
\[\text{gen}[B2] = \{ d4, d5 \} \]
\[\text{kill}[B2] = \{ d1, d2, d7 \} \]

\[B3 \]
\[d6: a := u2 \]
\[\text{gen}[B3] = \{ d6 \} \]
\[\text{kill}[B3] = \{ d3 \} \]

\[B4 \]
\[d7: i := u3 \]
\[\text{gen}[B4] = \{ d7 \} \]
\[\text{kill}[B4] = \{ d1, d4 \} \]
Reaching definitions

\[\text{Reaching definitions} \]

\[\text{B1:} \quad \begin{align*}
 \text{d1: } i & := m-1 \\
 \text{d2: } j & := n \\
 \text{d3: } a & := u1
\end{align*} \]

\[\text{B2:} \quad \begin{align*}
 \text{d4: } i & := i+1 \\
 \text{d5: } j & := j-1
\end{align*} \]

\[\text{B3:} \quad \begin{align*}
 \text{d6: } a & := u2
\end{align*} \]

\[\text{B4:} \quad \begin{align*}
 \text{d7: } i & := u3
\end{align*} \]

\[\text{gen[B1]} = \{ \text{d1, d2, d3} \} \]
\[\text{kill[B1]} = \{ \text{d4, d5, d6, d7} \} \]

\[\text{gen[B2]} = \{ \text{d4, d5} \} \]
\[\text{kill[B2]} = \{ \text{d1, d2, d7} \} \]

\[\text{gen[B3]} = \{ \text{d6} \} \]
\[\text{kill[B3]} = \{ \text{d3} \} \]

\[\text{gen[B4]} = \{ \text{d7} \} \]
\[\text{kill[B4]} = \{ \text{d1, d4} \} \]

\[\text{in[B2]} = \text{out[B1]} \cup \text{out[B3]} \cup \text{out[B4]} \]

\[\text{out[B2]} = \text{gen[B2]} \cup (\text{in[B3]} - \text{kill[B2]}) \]
\[\text{out[B2]} = \text{gen[B2]} \cup (\text{in[B4]} - \text{kill[B2]}) \]
Dataflow Analysis

- Compute Dataflow Equations over Control Flow Graph
 - Reaching Definitions (**Forward**)
 \[\text{out}[BB] := \text{gen}[BB] \cup (\text{in}[BB] – \text{kill}[BB]) \]
 \[\text{in}[BB] := \cup \text{out}[s] : \forall s \in \text{pred}[BB] \]
 - Liveness Analysis (**Backward**)
 \[\text{in}[BB] := \text{use}[BB] \cup (\text{out}[BB] – \text{def}[BB]) \]
 \[\text{out}[BB] := \cup \text{in}[s] : \forall s \in \text{succ}[BB] \]

- Computation by fixed-point analysis

SSA Form

- *def-use* chains keep track of where variables were defined and where they were used
- Consider the case where each variable has only one definition in the intermediate representation
- One static definition, accessed many times
- Static Single Assignment Form (SSA)
SSA Form

• SSA is useful because
 – Dataflow analysis and optimization is simpler when each variable has only one definition
 – If a variable has N uses and M definitions (which use N+M instructions) it takes N*M to represent def-use chains
 – Complexity is the same for SSA but in practice it is usually linear in number of definitions
 – SSA simplifies the register interference graph

SSA Form

• Original Program

 a := x + y
 b := a - 1
 a := y + b
 b := x * 4
 a := a + b

• SSA Form

 a1 := x + y
 b1 := a1 - 1
 a2 := y + b1
 b2 := x * 4
 a3 := a2 + b2

what about conditional branches?
SSA Form

1: \(b := M[x] \)
 \(a := 0 \)

2: if \(b < 4 \)

3: \(a := b \)

4: \(c := a + b \)

1: \(b1 := M[x1] \)
 \(a1 := 0 \)

2: if \(b1 < 4 \)

3: \(a2 := b1 \)

4: \(a3 := \phi(a2, a1) \)
 \(c1 := a3 + b1 \)

SSA Form

1: \(a := 0 \)

2: \(b := a + 1 \)
 \(c := c + b \)
 \(a := b \times 2 \) if \(a < N \)

3: \(\text{return } c \)

1: \(a1 := 0 \)

2: \(a3 := \phi(a2, a1) \)
 \(b1 := \phi(b0, b2) \)
 \(c2 := \phi(c0, c1) \)
 \(b2 := a3 + 1 \)
 \(c1 := c2 + b2 \)
 \(a2 := b2 \times 2 \) if \(a2 < N \)

3: \(\text{return } c1 \)
Optimizations using SSA

• SSA form contains statements, basic blocks and variables
• Dead-code elimination
 – if there is a variable \(v \) with no uses and \(\text{def} \) of \(v \) has no side-effects, delete statement defining \(v \)
 – if \(z := \phi(x, y) \) then eliminate this stmt if no \(\text{defs} \) for \(x, y \)

Optimizations using SSA

• Constant Propagation
 – if \(v := c \) for some constant \(c \) then replace \(v \) with \(c \) for all uses of \(v \)
 – \(v := \phi(c1, c2, ..., cn) \) where all \(c_i \) are equal to \(c \) can be replaced by \(v := c \)
Optimizations using SSA

- Conditional Constant Propagation
 - In previous flow graph, is j always equal to 1?
 - If j = 1 always, then block 6 will never execute and so j := i and j := 1 always
 - If j > 20 then block 6 will execute, and j := k will be executed so that eventually j > 20
 - Which will happen? Using SSA we can find the answer.
Optimizations using SSA

1: $i_1 := 1$ \hspace{1cm} j_1 := 1 \\
\hspace{1cm} k_1 := 0

2: $j_2 := \phi(j_4, j_1)$ \\
$\hspace{1cm} k_2 := \phi(k_4, k_1)$ \\
\hspace{1cm} if $k_2 < 100$

3: if $j_2 < 20$

4: return j_2

5: $j_3 := i_1$ \\
$\hspace{1cm} k_3 := k_2 + 1$

6: $j_5 := k_2$ \\
$\hspace{1cm} k_5 := k_2 + 1$

7: $j_4 := \phi(j_3, j_5)$ \\
$\hspace{1cm} k_4 := \phi(k_3, k_5)$

After Constant Propagation
Optimizations using SSA

After Constant Propagation

1:

2: \(k_2 := \phi(k_4, 0) \) if \(k_2 < 100 \)

3:

4: return 1

5: \(k_3 := k_2 + 1 \)

7: \(k_4 := \phi(k_3) \)

After Removing Empty Blocks and 1-arg \(\phi \) functions

Optimizations using SSA

1:

2: \(k_2 := \phi(k_3, 0) \) if \(k_2 < 100 \)

5: \(k_3 := k_2 + 1 \)

4: return 1
Optimizations using SSA

• Arrays, Pointers and Memory
 – For more complex programs, we need dependencies: how does statement B depend on statement A?
 – **Read after write**: A defines variable \(v \), then B uses \(v \)
 – **Write after write**: A defines \(v \), then B defines \(v \)
 – **Write after read**: A uses \(v \), then B defines \(v \)
 – **Control**: A controls whether B executes

• Memory dependence
 \[
 M[i] := 4 \\
x := M[j] \\
M[k] := j
 \]
• We cannot tell if \(i, j, k \) are all the same value which makes any optimization difficult
• Similar problems with Control dependence
• SSA does not offer an easy solution to these problems
SSA Form

• Conversion from a Control Flow Graph (created from TAC) into SSA Form is not trivial

• Two famous algorithms:
 – Lengauer-Tarjan algorithm (see the Tiger book by Andrew W. Appel for more details)
 – Harel algorithm

More on Optimization

• *Advanced Compiler Design and Implementation* by Steven S. Muchnick

• Control Flow Analysis
• Data Flow Analysis
• Dependence Analysis
• Alias Analysis
• Early Optimizations
• Redundancy Elimination

• Loop Optimizations
• Procedure Optimizations
• Code Scheduling (pipelining)
• Low-level Optimizations
• Interprocedural Analysis
• Memory Hierarchy
Amdahl’s Law

- \(\text{Speedup}_{\text{total}} = \left((1 - \text{Time}_{\text{Fraction optimized}}) + \frac{\text{Time}_{\text{Fraction optimized}}}{\text{Speedup}_{\text{optimized}}}-1 \right) \)

- Optimize the common case, 90/10 rule
- Requires quantitative approach
 - Profiling + Benchmarking
- Problem: Compiler writer doesn’t know the application beforehand

Summary

- Optimizations can improve speed, while maintaining correctness
- Various early optimization steps
- Global optimizations = dataflow analysis
- Reachability and Liveness analysis provides dataflow analysis
- Static Single-Assignment Form (SSA)