Automatic Speech Recognition

- Acoustic observations: signal processing to extract energy levels at each frequency level
- Observation sequence o is composed of acoustic features extracted from the waveform at regular (10msec) intervals
- ASR is the task of converting the observation sequence o into a transcription w
Noisy Channel Model

• Finding the best transcription w^* given an observation sequence o

$$w^* = \arg \max_w P(w | o) = \arg \max_w \frac{P(o | w)P(w)}{P(o)}$$

= \arg \max_w \frac{P(o | w)P(w)}{P(o)}$

generative model

language model

Generative Models of Speech

• **Speech recognition**: find word sequence w that maximizes $P(w | o)$, where o is a sequence of time dependent acoustic features (output of signal processing on speech signal)

• Typical decomposition of $P(w | o)$ into a cascade of generative models:
 - Acoustic Model:
 $P(o | p)$ predict observation sequence o given phone sequence p
 - Pronunciation Model:
 $P(p | w)$ predict phone sequence p given a word sequence w
 - Language Model:
 $P(w)$ predict word sequence w
Generative Models of Speech

- \(P(w \mid o) = P(o \mid w) \ast P(w) \) using Bayes Rule
- Decomposition of \(P(o \mid w) \) into a cascade of models:
 - **Acoustic Model** \(P(o \mid p) \) (model trained on the TIMIT corpus):
 - **Pronunciation Model** \(P(p \mid w) \) (model trained using TIMIT and the CMU pronunciation dictionary):
 - **Language Model**: \(P(w) \) (model trained using large amounts of text in the same domain)

 cf. Fundamentals of Speech Recognition, Rabiner and Juang

Generative Models of Speech

- Further decomposition of the acoustic model: \(P(o \mid p) \)
 - \(P(o \mid d) \) observation vectors given distribution sequences (quantitative given symbolic)
 - \(P(d \mid m) \) distribution sequences given model sequences (model dependent phone sequences)
 - \(P(m \mid p) \) model sequences given phone sequences
Brief History of ASR

• 1909: Universal service AT&T
• 1920s: Radio Rex
 – 500 Hz of energy in the word “Rex” caused the toy dog to move
• 1950s: Digit Recognition
 – 1952: Davis, Biddulph and Balashek (Bell Labs)
• Theory: 1967, Hidden Markov Models (HMMs) and Viterbi algorithm

• 1960s: Advances in Signal Processing and Neural Nets (not much progress in ASR)
• 1969: Advances in discrete word recognition
 – Vicens system (500 words)
 – Medress system (100 words)
• 1969: John Pierce letter
• 1970s: Despite large ARPA funding, not much success. Theory: dynamic programming methods
Brief History of ASR

• End of 1970s: Small vocabulary speech recognition
 – Heuristics’ $259 H-2000 Speech link
 – Verbex, Nippon, Threshold, Scott, Centigram and Interstate systems for between $2000 - $100,000
• Theory: 1977, the EM algorithm

2/20/08

Brief History of ASR

• 1980: IDA Symposium at Princeton
• 1980s: Discrete ASR, Language Models, corpus collection efforts
 – TIMIT corpus (phonetics)
 – ATIS corpus (Air Travel Information System)
 – Focus on language understanding dialog systems

2/20/08
Brief History of ASR

• 1990s: Large Vocabulary Continuous ASR
 – Dynamic Time Warping (edit distance)
 – Better phonetic models using classifiers (decision trees and neural nets)
 – Better language models using smoothing
 – Larger corpora: 10^7 and 10^9 in size

Brief History of ASR

• Current Work
 – Other languages and dialects
 – Multiple speakers, Speaker adaptation
 – Speaker identification
 – Noise resistant (telephone speech)
 – Open source software: HTK, Sphinx, CMU LM toolkit, SRI LM toolkit