Writing a grammar for natural language: Grammar Development

- **Grammar development** is the process of writing a grammar for a particular language.
- This can be either for a particular application or concentrating on a particular phenomena in the language under consideration.
- Check against text corpora to check the **coverage** of your grammar – to do this you need a parser.
- Also consider generalizations provided by a linguistic analysis.
Consider the grammar development using CFGs for the ATIS Corpus.

To capture all the morphological details which affect the syntax, the CFG ends up with rules like:

\[
S \rightarrow 3\text{sgAux} \ 3\text{sgNP} \ \text{VP}
\]

\[
S \rightarrow \text{Non3sgAux} \ \text{Non3sgNP} \ \text{VP}
\]

\[
3\text{sgAux} \rightarrow \text{does} \mid \text{has} \mid \text{can} \mid \ldots
\]

\[
\text{Non3sgAux} \rightarrow \text{do} \mid \text{have} \mid \text{can} \mid \ldots
\]
Real Grammars get Messy

This is to deal with sentences like:

1. Do I get dinner on this flight? (1sg = 1st person singular)
2. Do you have a flight from Boston to Fort Worth? (2sg = 2nd person singular)
3. Does he visit Toronto? (3sg = 3rd person singular)
4. Does Delta fly from Atlanta to San Diego? (3sg = 3rd person singular)
5. Do they visit Toronto? (3pl = 3rd person plural)
Real Grammars get Messy

- Not just grammatical features but also subcategorization (what kind of arguments does a verb expect?):

 \[
 VP \rightarrow \text{Verb-with-NP-complement } NP \quad \text{“prefer a morning flight”}
 \]

 \[
 VP \rightarrow \text{Verb-with-S-complement } S \quad \text{“said there were two flights”}
 \]

 \[
 VP \rightarrow \text{Verb-with-Inf-VP-complement } VP_{inf} \quad \text{“try to book a flight”}
 \]

 \[
 VP \rightarrow \text{Verb-with-no-complement} \quad \text{“disappear”}
 \]
Solution to non-terminal and rule blowup: Feature Structures

- **Feature structures** provide a natural way to provide complex information with each non-terminal. In some formalisms, the non-terminal is replaced with feature structures, resulting in a potentially infinite set of non-terminals.

- Feature structures are also known as f-structures, feature bundles, feature matrices, functional structures, terms (as in Prolog), or dags (directed acyclic graphs)
A *feature structure* is defined as a partial function from features to their values.

For instance, we can define a function mapping the feature *number* onto the value *singular* and mapping *person* to *third*. The common notation for this function is:

\[
\begin{bmatrix}
\text{number: singular} \\
\text{person: 3}
\end{bmatrix}
\]
Feature Structures

- Feature values can themselves be feature structures:

\[
\begin{bmatrix}
\text{cat: NP} \\
\text{agreement:} \\
\text{number: singular} \\
\text{person: 3}
\end{bmatrix}
\]
Feature Structures

- Consider features f and g with two distinct feature structure values of the same type:

$$
\begin{array}{c}
\text{f:} [h: a] \\
\text{g:} [h: a]
\end{array}
$$
Feature Structures

- Feature structures can also share values. For instance, \(g \) shares the same value as \(f \) in:

\[
\begin{bmatrix}
 \text{f: 1}\left[\text{h: a} \right] \\
 \text{g: 1}
\end{bmatrix}
\]

- The shared value is written using a co-indexation – indicating that the value is stored only once, with the index acting as a pointer.
The feature structure:

\[
\begin{bmatrix}
\text{agreement: } & 1 \\
\text{person: } & 3 \\
\text{number: } & \text{sg}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{subject: } & \text{agreement: } & 1
\end{bmatrix}
\]

is represented as:

\(<\text{agreement number}>=\text{sg}\)
\(<\text{agreement person}>=\text{3}\)
\(<\text{subject agreement}>=\text{<agreement>}\)

or:

\[[\text{agreement } = (1) \ [\text{number } = '\text{sg}', \text{person } = 3 \]],\]
\[[\text{subject } = [\text{agreement-}>(1)]]\]

or:

\[[\text{agreement } = \text{?n } [\text{number } = '\text{sg}', \text{person } = 3 \]],\]
\[[\text{subject } = [\text{agreement } = \text{?n }]]\]
Feature structures have different amounts of information. Can we find an ordering on feature structures that corresponds to the compatibility and relative specificity of the information contained in them.

Subsumption is a precise method of defining such an ordering over feature structures.
Consider the feature structure:

\[D_{np} = \left[\begin{array}{c}
\text{cat: NP}
\end{array} \right] \]

Compare with the feature structure:

\[D_{np3sg} = \left[\begin{array}{c}
\text{cat: NP} \\
\text{agreement:} \left[\begin{array}{c}
\text{number: singular} \\
\text{person: 3}
\end{array} \right]
\end{array} \right] \]
Subsumption

- D_{np} makes the claim that a phrase is a noun phrase, but leaves open the question of what the agreement properties of this noun phrase are.
- D_{np3sg} also contains information about a noun phrase, but makes the agreement properties specific.
- The feature structure D_{np} is said to carry less information than, or to be more general than, or to subsume the feature structure D_{np3sg}.
Subsumption

- $D_{\text{var}} = []$
- $D_{np} = [\text{cat: NP}]
- $D_{npsg} =
 \begin{cases}
 \text{cat: NP} \\
 \text{agreement: [number: singular]}
 \end{cases}$
- $D_{np3sg} =
 \begin{cases}
 \text{cat: NP} \\
 \text{agreement: [number: singular, person: 3]}
 \end{cases}$
- $D'_{np3sg} =
 \begin{cases}
 \text{cat: NP} \\
 \text{agreement: [number: singular, person: 3]} \\
 \text{subject: 1}
 \end{cases}$

The following subsumption relations hold:

$D_{\text{var}} \subseteq D_{np} \subseteq D_{npsg} \subseteq D_{np3sg} \subseteq D_{np3sgSbj} \subseteq D'_{np3sgSbj}$
Unification

- Two feature structures might have different and incompatible information:

 \[
 \begin{array}{|c|}
 \hline
 \text{cat: NP} \\
 \text{agreement: } [\text{number: singular}] \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{|c|}
 \hline
 \text{cat: NP} \\
 \text{agreement: } [\text{number: plural}] \\
 \hline
 \end{array}
 \]

- In this case, there is no feature structure that is subsumed by both feature structures
Subsumption is only a partial order – that is, not every two feature structures are in a subsumption relation with each other.

Two feature structures might have different but compatible information:

\[
\begin{array}{c}
\text{cat: NP} \\
\text{agreement:} \left[\text{number: singular} \right]
\end{array}
\]

\[
\begin{array}{c}
\text{cat: NP} \\
\text{agreement:} \left[\text{person: 3} \right]
\end{array}
\]
Unification

- If two feature structures have different but compatible information then there always exists a more specific feature structure that is subsumed by both feature structures:

\[
\begin{aligned}
cat & : \text{NP} \\
agreement & : \begin{cases}
\text{number: singular} \\
\text{person: 3}
\end{cases}
\end{aligned}
\]
But there are many feature structures subsumed by both of the original feature structures:

\[
\begin{align*}
\text{cat: NP} \\
\text{agreement:} \\
\quad \text{number: singular} \\
\quad \text{person: 3} \\
\quad \text{gender: masculine}
\end{align*}
\]

So instead of considering all such feature structures we only consider the most general FS that is subsumed by the two original FSs.

This definition provides a feature structure that contains information from both input FSs but no additional information.
Now we can define **unification**

The *unification* of two feature structures D' and D'' is defined as the most general feature structure D such that $D' \sqsubseteq D$ and $D'' \sqsubseteq D$.

This operation of unification is denoted as $D = D' \sqcup D''$
Unification

\[
[] \sqcup [\text{cat: NP}] = [\text{cat: NP}]
\]
Unification

\[
\begin{bmatrix}
\text{person: sg} \\
\text{number: 3}
\end{bmatrix} \sqcup \begin{bmatrix}
\text{number: 3}
\end{bmatrix} = \begin{bmatrix}
\text{person: sg} \\
\text{number: 3}
\end{bmatrix}
\]
Unification

\[
\begin{align*}
\text{agreement: } & \begin{cases}
\text{number: } sg
\end{cases} \\
\text{subject: } & \begin{cases}
\text{agreement: } & \begin{cases}
\text{number: } sg
\end{cases} \\
\text{subject: } & \begin{cases}
\text{agreement: } & \begin{cases}
\text{person: } 3
\end{cases} \\
\text{agreement: } & \begin{cases}
\text{number: } sg
\end{cases} \\
\text{subject: } & \begin{cases}
\text{agreement: } & \begin{cases}
\text{number: } sg
\end{cases} \\
\text{person: } 3
\end{cases}
\end{cases}
\end{align*}
\]
Unification

\[
\begin{pmatrix}
\text{agreement: 1} \\
\text{subject: agreement: 1}
\end{pmatrix}
\sqcup
\begin{pmatrix}
\text{subject: agreement: [person: 3]}
\end{pmatrix}
=
\begin{pmatrix}
\text{agreement: 1} \\
\text{number: sg} \\
\text{person: 3} \\
\text{subject: agreement: 1}
\end{pmatrix}
\]
Algorithms for Unification

- Represent input feature structure as a directed acyclic graph (dag). Unification is equivalent to the union-find algorithm.
- Unification is more efficient if it can be destructive: it destroys the input feature structures to create the result of unification.
- The (destructive) unification algorithm in J&M (page 423) does it in two steps: represent feature structures as dags, and then perform graph matching (and merging).
- Note that this algorithm can produce as output a dag (i.e. a feature structure) containing cycles. A feature structure can have part of itself as a subpart:

\[
\begin{array}{c}
\text{f: } 1 \\
\text{g: h: 1 }
\end{array}
\]

- This can be avoided with an explicit check for each call to the unify algorithm called the occur check.
- Computationally expensive since we have to traverse the whole dag at each step.
Feature Structures in CFGs

- Feature Structures impose constraints on CFG derivations:

\[
\begin{align*}
S & \rightarrow NP \quad [\text{case: nominative}] \quad VP \\
VP & \rightarrow V \quad NP \quad [\text{case: accusative}] \\
V & \rightarrow \text{saw} \\
NP & \rightarrow \text{he} \quad [\text{case: 1 nominative}] \\
NP & \rightarrow \text{him} \quad [\text{case: 1 accusative}] \\
NP & \rightarrow \text{John} \quad [\text{case: 1 nominative | accusative}] \\
\end{align*}
\]

- This CFG derives: \textit{he saw him} but not: \textit{*him saw he}
- Also derives: \textit{John saw him}, \textit{he saw John}.
- Co-indexing in each FS is local to each CFG rule.
A more complex example for encoding subcategorization as feature structures:

\[
S \rightarrow NP \ VP \\
VP \quad \rightarrow \quad Verb \\
VP \quad \rightarrow \quad VP \\
X \quad \rightarrow \quad cat: 2 \ NP
\]
In the above example, the CFG can generate an arbitrary number of NPs in the subcat feature structure for the verb.

In effect, the above steps of unification in a CFG derivation creates a list containing the subcat elements. The subcat feature structure uses \texttt{first} and \texttt{rest} to construct the list in the recursive rule $VP \rightarrow VP \ X$.

The lexical terminal \textit{Verb} can impose a constraint on which subcat frame is required.

Other categories can be added simply by adding a new \texttt{cat} attribute for X: e.g. $\left[\text{cat: S}\right]$ for verbs that can have a subcat of $NP \ S$.
Unification Algorithm

function unify(f1, f2):
 returns f-structure or failure

 if f1.content == null: f1.pointer = f2
 if f2.content == null: f2.pointer = f1
 if f1.content == f2.content: f1.pointer = f2
 if f1.content and f2.content are complex f-structures:
 f2.pointer = f1
 for each f in f2.content:
 other-feature = find or create feature
 corresponding to f in f1.content
 if unify(f, other-feature) == failure:
 return failure
 return f1
Unification in Earley Parsing

▶ predictor: if \((A \rightarrow \alpha \cdot B \beta, [i, j], \text{dag}_{A_1})\) then \(\forall (B \rightarrow \gamma, \text{dag}_{B_1})\) enqueue((\(B \rightarrow \cdot \gamma, [j, j], \text{dag}_{B_1}\), chart[j])

▶ scanner: if \((A \rightarrow \alpha \cdot a \beta, [i, j], \text{dag}_{A_1})\) and \(a = \text{tokens}[j]\) then enqueue((\(A \rightarrow \alpha a \cdot \beta, [i, j + 1], \text{dag}_{A_1}\), chart[j + 1])

▶ completer: if \((B \rightarrow \gamma \cdot, [j, k], \text{dag}_{B_1})\), for each \((A \rightarrow \alpha \cdot B \beta, [i, j], \text{dag}_{A_1})\) enqueue((\(A \rightarrow \alpha B \cdot \gamma, [i, k], \text{copy-and-unify}(\text{dag}_{A_1}, \text{dag}_{B_1})\), chart[k])

unless \(\text{copy-and-unify}(\text{dag}_{A_1}, \text{dag}_{B_1})\) fails

▶ copy-and-unify means that we make copies of the dags before unification because we are using a destructive unification algorithm

▶ copy-and-unify ensures that \(\text{dag} A_1\) in state \((A \rightarrow \alpha \cdot B \beta, [i, j], \text{dag}_{A_1})\) is not destroyed since it can be used in the completer with other states and unify with them.
Consider two different enqueue requests:
\[
\text{enqueue}((A \rightarrow \alpha B \bullet \gamma, [i, k], \text{dag}_{A_1}), \text{chart}[k])
\]
\[
\text{enqueue}((A \rightarrow \alpha B \bullet \gamma, [i, k], \text{dag}_{A_2}), \text{chart}[k])
\]

Consider the case where:
\[
\text{dag}_{A_1} = \begin{cases}
\text{tense: past} | \text{plural} \end{cases}
\]
\[
\text{and}
\]
\[
\text{dag}_{A_2} = \begin{cases}
\text{tense: past} \end{cases}
\]

Clearly, \(\text{dag}_{A_1} \subseteq \text{dag}_{A_2} \)
Unification in Earley Parsing

- Which feature structure should be selected after the two enqueue commands above?

 Three options: $\text{dag}_{A_1}, \text{dag}_{A_2}, \text{dag}_{A_1} \sqcup \text{dag}_{A_2}$

- In general, the feature inserted should subsume both dag_{A_1} and dag_{A_2}

- In practice exactly one of the following conditions is always true:

 - If $\text{dag}_{A_1} \sqsubseteq \text{dag}_{A_2}$ then enqueue picks dag_{A_1},

 - If $\text{dag}_{A_2} \sqsubseteq \text{dag}_{A_1}$ then enqueue picks dag_{A_2}.

 - If $\text{dag}_{A_1} \not\subseteq \text{dag}_{A_2}$ and $\text{dag}_{A_2} \not\subseteq \text{dag}_{A_1}$ then enqueue picks $\text{dag}_{A_1} \sqcup \text{dag}_{A_2}$
Unification in Earley Parsing

- During the enqueue of a state, we always pick the most general feature structure possible.
- To see why consider an example:
 - Consider a chart which contains the state:
 \[S_1 = \left(NP \rightarrow \bullet DT \ NP, [i, i], dag_{S_1} = \emptyset \right) \]
 - The parser then tries to enqueue a new state:
 \[S_2 = \left(NP \rightarrow \bullet DT \ NP, [i, i], dag_{S_2} = \left\{ DT\text{.num} = \text{sing} \right\} \right) \]
 - Consider two possible situations:
 1. a singular DT is scanned, then either \(dag_{S_1} \) or \(dag_{S_2} \) would unify and parsing would continue.
 2. a plural DT is scanned, then if we picked \(dag_{S_2} \) we have a unification failure; on the other hand picking the more general feature structure \(dag_{S_1} \) allows parsing to continue.
- So, if there are two possible ways to derive a span, then the most general feature structure is the one we must choose.
Summary

- Feature structures generalize the notion of non.terminals in a grammar.
- Complex morphological details can be encoded into a feature structure.
- Feature structures can have shared or co-referential parts.
- Feature structures can implement arbitrary lists (the notation is very computationally powerful).
- Unification provides a means to combine the information in two feature structures.
- Feature structures can be used in a context-free grammar, and
- Unification is done while parsing to ensure that the constraints specified in the features are not violated.