Formal Languages: Recap

- Symbols: a, b, c
- Alphabet: finite set of symbols $\Sigma = \{a, b\}$
- String: sequence of symbols bab
- Empty string: ε Define: $\Sigma^e = \Sigma \cup \{\varepsilon\}$
- Set of all strings: Σ^* cf. *The Library of Babel*, Jorge Luis Borges
- (Formal) Language: a set of strings
 $\{a^n \ b^n : n > 0\}$
Regular Languages

- The set of regular languages: each element is a regular language
- Each regular language is an example of a (formal) language, i.e., a set of strings
 e.g. \{ a^m b^n : m, n \text{ are } +ve \text{ integers} \}

Regular Languages

- Defining the set of all regular languages:
 - The empty set and \{a\} for all a in \Sigma^* are regular languages
 - If \(L_1\) and \(L_2\) and \(L\) are regular languages, then:
 \[L_1 \cdot L_2 = \{ xy | x \in L_1 \text{ and } y \in L_2 \} \] (concatenation)
 \[L_1 \cup L_2 \] (union)
 \[L^* = \bigcup_{i=0}^{\infty} L^i \] (Kleene closure)
 are also regular languages
 - There are no other regular languages
Formal Grammars

• A formal grammar is a concise description of a formal language
• A formal grammar uses a specialized syntax
• For example, a regular expression is a concise description of a regular language

$(a|b)^*abb$: is the set of all strings over the alphabet $\{a, b\}$ which end in abb

Regular Expressions: Definition

• Every symbol of $\Sigma \cup \{ \varepsilon \}$ is a regular expression
• If r_1 and r_2 are regular expressions, so are
 – Concatenation: $r_1 \cdot r_2$
 – Alternation: $r_1 | r_2$
 – Repetition: r_1^*
• Nothing else is.
 – Grouping re’s: e.g. aalbc vs. ((aa)lb)c
Regular Expressions: Examples

• Alphabet \{ V, C \} V: vowel C: consonant
• A set of consonant-vowel sequences (CV|CCV)*
• All strings that do not contain “VC” as a substring C*V*
• Need a decision procedure: does a particular regular expression (regexp) accept an input string
• Provided by: Finite State Automata

Finite Automata: Recap

• A set of states S
 – One start state \(q_0 \), zero or more final states F
• An alphabet \(\Sigma \) of input symbols
• A transition function:
 – \(\delta: S \times \Sigma \Rightarrow S \)
• Example: \(\delta(1, a) = 2 \)
Finite Automata: Example

• What regular expression does this automaton accept?

Answer: (0|1)*00

NFAs

• NFA: like a DFA, except
 – A transition can lead to more than one state, that is, \(\delta: S \times \Sigma \Rightarrow 2^S \)
 – One state is chosen non-deterministically
 – Transitions can be labeled with \(\varepsilon \), meaning states can be reached without reading any input, that is,
 \(\delta: S \times \Sigma \cup \{ \varepsilon \} \Rightarrow 2^S \)
Recognition of strings (NFAs)

- Input string: aba#
- Recognition problem: Is input string in the language generated by the NFA?
- Recognition (without conversion to DFA) is also called *simulation* of NFA

Recognition of strings (NFAs)

- Input tape: 0 a 1 b 2 a 3 # 4
- Start State: A Agenda: { (A, 0) }
- Pop (A, 0) from Agenda
- q(A, a) = B, Agenda: { (B, 1) }
- Pop (B, 1) from Agenda
- q(B, b) = { D, C } Agenda: { (D, 2), (C, 2) }

q is the transition function for the NFA
Recognition of strings (NFAs)

- Input tape: 0 a 1 b 2 a 3 # 4
- Pop (D, 2) from Agenda
- q(D, a) = { B } Agenda: { (B, 3), (C, 2) }
- Pop (B, 3) from Agenda: B is not a final state
- Pop (C, 2) from Agenda: if Agenda empty, reject
- q(C, a) = { D } Agenda: { (D, 3) }
- Is (D, 3) an accept item?
- Yes: D is a final state and 3 is index of the end-of-string marker #
- Return accept
Recognition of strings (NFAs)

function NDRecognize(tape[], q):
 Agenda = { (start-state, 0) }
 Current = (state, index) = pop(Agenda)
 while (true) {
 if (Current is an accept item) return accept
 else Agenda = Agenda ∪ GenStates(q, state, tape[index])
 if (Agenda is empty) return reject
 else Current = (state, index) = pop(Agenda)
 }

function GenStates(q, state, index):
 return { (q’, index) : for all q’ = q(state, ε) } ∪
 { (q’, index+1) : for all q’ = q(state, tape[index+1]) }