CMPT 413
Computational Linguistics

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

Sequence Learning

• British Left Waffles on Falkland Islands
 – (N, N, V, P, N, N)
 – (N, V, N, P, N, N)

• Segmentation
 中国十四个边境开放城市建设成就显著
 – (b, i, b, i)
 China's 14 open border cities marked economic achievements
Sequence Learning

3 states: N, V, P
Observation sequence: \((o_1, \ldots, o_6)\)
State sequence (6+1): \((\text{Start}, N, N, V, P, N, N)\)

Finite State Machines

Mealy Machine
Finite State Machines

Probabilistic FSMs

- Start at a state i with a start state probability: π_i
- Transition from state i to state j is associated with a transition probability: a_{ij}
- Emission of symbol o from state i is associated with an emission probability: $b_i(o)$
- Two conditions:
 - All outgoing transition arcs from a state must sum to 1
 - All symbol emissions from a state must sum to 1
Probabilistic FSMs

\[\begin{align*}
\pi_A &= \frac{1}{2} \\
\pi_N &= \frac{1}{2}
\end{align*} \]

Transition

\[\begin{align*}
a_{A,A} &= \frac{1}{3} \\
a_{A,N} &= \frac{2}{3} \\
a_{N,N} &= \frac{9}{10} \\
a_{N,A} &= \frac{1}{10}
\end{align*} \]

Emission

\[\sum_{o \in V} b_i(o) = 1 \]
Hidden Markov Models

- There are \(n \) states \(s_1, \ldots, s_i, \ldots, s_n \)
- The emissions are observed (input data)
- Observation sequence \(O = (o_1, \ldots, o_T) \)
- The states are not directly observed (hidden)
- Data does not directly tell us which state \(X_t \) is linked with observation \(o_t \)

\[X_t \in \{s_1, \ldots, s_n\} \]

Markov Chains vs. HMMs

- For observation sequence \(babaa \)
 - \(i.e: \ o_1=b, \ o_2=a, \ldots, \ o_5=a \)
- Compute \(P(babaa) \) using a bigram model
 \[P(b)P(alb)P(bla)P(alb)P(ala) \]
- Equivalent Markov chain:

```
       b
P(alb)  |
\( P(\cdot) \)
  |
\( P(\cdot) \)
```

\(P(alb) \)

\(P(alb) \)
Markov Chains vs. HMMs

- For observation sequence $babaa$

 $o_1=b$, $o_2=a$, ..., $o_5=a$

- Compute $P(babaa)$ using a trigram model

 $P(ba)*P(b|ba)*P(a|ab)*P(a|ba)$

- Equivalent Markov chain:
Markov Chains vs. HMMs

- Given an observation sequence \(O = (o_1, \ldots, o_n, \ldots, o_T) \)
- An \(n \)-th order Markov Chain or \(n \)-gram model computes the probability \(P(o_1, \ldots, o_n, \ldots, o_T) \)
- An HMM computes the probability \(P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T) \) where the state sequence is hidden

Properties of HMMs

- Markov assumption
 \[
P(X_t = s_i \mid \ldots, X_{t-1} = s_j)\]
- Stationary distribution
 \[
P(X_t = s_i \mid X_{t-1} = s_j) = P(X_{t+1} = s_i \mid X_{t+1-1} = s_j)\]
HMM Algorithms

- HMM as language model: compute probability of given observation sequence
- HMM as parser: compute the best sequence of states for a given observation sequence
- HMM as learner: given a set of observation sequences, learn its distribution, i.e. learn the transition and emission probabilities

\[
P(o_1, \ldots, o_T) = \sum_{X_1, \ldots, X_{T+1}} P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T)
\]

\[
P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T) = \prod_{t=1}^{T} P(X_{t+1} = s_j \mid X_t = s_i) \times P(o_t = k \mid X_{t+1} = s_j)
\]
HMM Algorithms

- HMM as parser: compute the best sequence of states for a given observation sequence
- Compute best path \(X_1, \ldots, X_{T+1}\) from the probability \(P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T)\)

Best state sequence \(X^*_1, \ldots, X^*_{T+1}\)

\[
= \arg\max_{X_1, \ldots, X_{T+1}} P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T)
\]

Best Path (Viterbi) Algorithm

- Key Idea 1: storing just the best path doesn’t work
- Key Idea 2: store the best path upto each state
Viterbi Algorithm

function **viterbi** (edges, input, obs): returns best path
edges = transition probability
input = emission probability
T = length of obs, the observation sequence
num-states = number of states in the HMM
Create a path-matrix: viterbi[num-states+1, T+1] # init to all 0s
for each state s: viterbi[s, 0] = π[s]
for each time step t from 0 to T:
 for each state s from 0 to num-states:
 for each s’ where edges[s,s’] is a transition probability:
 new-score = viterbi[s,t] * edges[s,s’] * input[s’,obs[t]]
 if (viterbi[s’,t+1] == 0) or (new-score > viterbi[s’, t+1]):
 viterbi[s’, t+1] = new-score
 back-pointer[s’,t+1] = s
finding the best path
best-final-score = best-final-state = 0
for each state s from 0 to num-states:
 if (viterbi[s,T+1] > best-final-score):
 best-final-state = s
 best-final-score = viterbi[s,T+1]
start with the last state in the sequence
x = best-final-state
state-sequence.push(x)
for t from T+1 downto 0:
 state-sequence.push(back-pointer[x,t])
 x = back-pointer[x,t]
return state-sequence