CMPT-413
Computational Linguistics

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

March 5, 2008
Hidden Markov Model

- **Model** $\theta = \{\pi_i, a_{i,j}, b_i(o)\}$
 - π_i: probability of starting at state i
 - $a_{i,j}$: probability of transition from state i to state j
 - $b_i(o)$: probability of output o at state i
HMM Learning from Labeled Data

- Model $\theta = \{\pi_i, a_{i,j}, b_i(o)\}$
 - π_i: probability of starting at state i
 - $a_{i,j}$: probability of transition from state i to state j
 - $b_i(o)$: probability of output o at state i
HMM Learning from Labeled Data

The task: to find the values for the parameters of the HMM:

- π_A, π_N
- $a_{A,A}$, $a_{A,N}$, $a_{N,N}$, $a_{N,A}$
- $b_A(killer)$, $b_A(crazy)$, $b_A(clown)$, $b_A(problem)$
- $b_N(killer)$, $b_N(crazy)$, $b_N(clown)$, $b_N(problem)$
Learning from Fully Observed Data

- **Labeled Data:**

 \[x_1, y_1: \text{killer/N clown/N} \quad x_3, y_3: \text{crazy/A problem/N} \]

 \[x_2, y_2: \text{killer/N problem/N} \quad x_4, y_4: \text{crazy/A clown/N} \]

- Let’s say we have \(m \) labeled examples: \((x_1, y_1), \ldots, (x_m, y_m)\)

- Each \((x_l, y_l) = \{o_1, \ldots, o_T, s_1, \ldots, s_T\}\)

- For each \((x_l, y_l)\) we can compute the probability using the HMM:

 \[(x_1, y_1): \pi_N \cdot b_N(\text{killer}) \cdot a_{N,N} \cdot b_N(\text{clown}) \]

 \[(x_2, y_2): \pi_N \cdot b_N(\text{killer}) \cdot a_{N,N} \cdot b_N(\text{problem}) \]

 \[(x_3, y_3): \pi_A \cdot b_A(\text{crazy}) \cdot a_{A,N} \cdot b_N(\text{problem}) \]

 \[(x_4, y_4): \pi_A \cdot b_A(\text{crazy}) \cdot a_{A,N} \cdot b_N(\text{clown}) \]
Learning from Fully Observed Data

Labeled Data:

- \(x_1, y_1: \text{killer/}\text{N clown/}\text{N}\)
- \(x_3, y_3: \text{crazy/}\text{A problem/}\text{N}\)
- \(x_2, y_2: \text{killer/}\text{N problem/}\text{N}\)
- \(x_4, y_4: \text{crazy/}\text{A clown/}\text{N}\)

We can easily collect frequency of observing a word with a state (tag):

- \(f(i, x, y) = \text{number of times } i \text{ is the initial state in } (x, y)\)
- \(f(i, j, x, y) = \text{number of times } j \text{ follows } i \text{ in } (x, y)\)
- \(f(i, o, x, y) = \text{number of times } i \text{ is paired with observation } o\)

Then according to our HMM the probability of \(x, y\) is:

\[
P(x, y) = \prod_{i: f(i, x, y) = 1} \pi_i^{f(i, x, y)} \cdot \prod_{i,j} a_{i,j}^{f(i, j, x, y)} \cdot \prod_{i,o} b_i(o)^{f(i, o, x, y)}
\]
Learning from Fully Observed Data

According to our HMM the probability of x, y is:

$$P(x, y) = \prod_{i: f(i, x, y) = 1} \pi_i f(i, x, y) \cdot \prod_{i, j} a_{i, j} f(i, j, x, y) \cdot \prod_{i, o} b_i(o) f(i, o, x, y)$$

The probability of the labeled data $(x_1, y_1), \ldots, (x_m, y_m)$ according to HMM with parameters θ is:

$$L(\theta) = \sum_{l=1}^{m} \log P(x_l, y_l)$$

$$= \sum_{l=1}^{m} \sum_{i: f(i, x, y) = 1} f(i, x_l, y_l) \log \pi_i +$$

$$\sum_{i, j} f(i, j, x_l, y_l) \log a_{i, j} +$$

$$\sum_{i, o} f(i, o, x_l, y_l) \log b_i(o)$$
Learning from Fully Observed Data

\[L(\theta) = \sum_{l=1}^{m} \left(\sum_{i} f(i, x_l, y_l) \log \pi_i + \sum_{i,j} f(i, j, x_l, y_l) \log a_{i,j} + \sum_{i,o} f(i, o, x_l, y_l) \log b_{i}(o) \right) \]

- **\(L(\theta) \) is the probability of the labeled data \((x_1, y_1), \ldots, (x_m, y_m)\)**
- **We want to find a \(\theta \) that will give us the maximum value of \(L(\theta) \)**
- **We find the \(\theta \) such that \(\frac{dL(\theta)}{d\theta} = 0 \)**
Learning from Fully Observed Data

\[L(\theta) = \sum_{l=1}^{m} \sum_{i} f(i, x_l, y_l) \log \pi_i + \sum_{i,j} f(i, j, x_l, y_l) \log a_{i,j} + \sum_{i,o} f(i, o, x_l, y_l) \log b_{i}(o) \]

- The values of \(\pi_i, a_{i,j}, b_{i}(o) \) that maximize \(L(\theta) \) are:

\[
\pi_i = \frac{\sum_{l} f(i, x_l, y_l)}{\sum_{l} \sum_{k} f(k, x_l, y_l)}
\]

\[
a_{i,j} = \frac{\sum_{l} f(i, j, x_l, y_l)}{\sum_{l} \sum_{k} f(i, k, x_l, y_l)}
\]

\[
b_{i}(o) = \frac{\sum_{l} f(i, o, x_l, y_l)}{\sum_{l} \sum_{o' \in V} f(i, o', x_l, y_l)}
\]
Learning from Fully Observed Data

- Labeled Data:
 - x_1, y_1: killer/N clown/N
 - x_3, y_3: crazy/A problem/N
 - x_2, y_2: killer/N problem/N
 - x_4, y_4: crazy/A clown/N

- The values of π_i that maximize $L(\theta)$ are:

 $$\pi_i = \frac{\sum_l f(i, x_l, y_l)}{\sum_l \sum_k f(k, x_l, y_l)}$$

- $\pi_N = \frac{2}{4}$ and $\pi_A = \frac{2}{4}$ because:

 $$\sum_l f(N, x_l, y_l) = 2$$
 $$\sum_l f(A, x_l, y_l) = 2$$
Learning from Fully Observed Data

▶ Labeled Data:

\[x_1, y_1: \text{killer/N clown/N} \quad x_3, y_3: \text{crazy/A problem/N} \]
\[x_2, y_2: \text{killer/N problem/N} \quad x_4, y_4: \text{crazy/A clown/N} \]

▶ The values of \(a_{i,j} \) that maximize \(L(\theta) \) are:

\[
a_{i,j} = \frac{\sum_l f(i, j, x_l, y_l)}{\sum_l \sum_k f(i, k, x_l, y_l)}
\]

▶ \(a_{N,N} = \frac{2}{4} = \frac{1}{2} \); \(a_{N,A} = 0 \); \(a_{A,N} = \frac{1}{2} \) and \(a_{A,A} = 0 \) because:

\[
\sum_l f(N, N, x_l, y_l) = 2 \quad \sum_l f(A, N, x_l, y_l) = 2
\]
\[
\sum_l f(N, A, x_l, y_l) = 0 \quad \sum_l f(A, A, x_l, y_l) = 0
\]
Learning from Fully Observed Data

Labeled Data:

x1,y1: killer/N clown/N x3,y3: crazy/A problem/N
x2,y2: killer/N problem/N x4,y4: crazy/A clown/N

The values of $b_i(o)$ that maximize $L(\theta)$ are:

$$b_i(o) = \frac{\sum_l f(i, o, x_l, y_l)}{\sum_l \sum_{o' \in V} f(i, o', x_l, y_l)}$$

$b_N(killer) = \frac{2}{6} = \frac{1}{3}$; $b_N(clown) = \frac{1}{3}$; $b_N(problem) = \frac{1}{3}$ and $b_A(crazy) = 1$ because:

$$\sum_l f(N, killer, x_l, y_l) = 2 \quad \sum_l f(A, killer, x_l, y_l) = 0$$
$$\sum_l f(N, clown, x_l, y_l) = 2 \quad \sum_l f(A, clown, x_l, y_l) = 0$$
$$\sum_l f(N, crazy, x_l, y_l) = 0 \quad \sum_l f(A, crazy, x_l, y_l) = 2$$
$$\sum_l f(N, problem, x_l, y_l) = 2 \quad \sum_l f(A, problem, x_l, y_l) = 0$$