CMPT-413
Computational Linguistics

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

April 7, 2008
So far, we have listed **words** in our **lexicon** or **vocabulary** assuming a single meaning per word:
Consider n-grams $P(w_i \mid w_{i-2}, w_{i-1}) = P(Bank \mid on,$
\textit{Commerce}) or
prepositional phrase attachment if $p=on$ and $n2=bank$ then
change N to V

Consider . . . **withdraw twenty dollars on the bank** (correct = V)
vs.
. . . **withdraw the troops on the bank** (correct = N)

The same word **bank** means two different things but we
cannot distinguish between them using the traditional
definition of word.
Lexical Semantics

To deal with this issue, we combine the *spelling* or *pronunciation* of a word and the *meaning*. In the *lexicon* we now store *lexemes* instead of words. A lexeme pairs a particular spelling or pronunciation with a particular meaning.

The meaning part of a lexeme is called a *sense*. For CL, our interest is in relations between lexemes or disambiguating different senses of a word.

word: bank → lexeme: **bank**¹ OR word: bank → lexeme: **bank**²

Note that meanings are often not definitions, but often are simple listings of compatible lexemes.

cf. dictionary defns: *red*, *n.* the color of blood or ruby; *blood*, *n.* red liquid circulating in animals
Homonyms

- Homonyms: *words that have the same form but different meanings*
 1. *Instead, the chemical plant was found in violation of several environmental laws*
 2. *Stanley formed an expedition to find a rare plant found along the Amazon river*

- Same *orthographic form: plant* but two senses: plant1 and plant2
Homonyms

- Text vs. speech: fly-casting for bass vs. rhythmic bass chords
 These cases are homonyms in text, but not in speech.
 Referred to as homographs

- Speech vs. text: would vs. wood
 These cases are not homonyms in text, but easily confused in speech.
 Referred to as homophones

- Note that this problem in some cases can be solved using part of speech tagging
 Can you think of a case which cannot be solved using POS tagging?
Applications

- Spelling correction: homophones: *weather* vs. *whether*
- Speech recognition: homophones: *to*, *two*, *too*. Also homonyms (see *n*-gram e.g.)
- Text to speech: homographs: *bass* vs. *bass*
- Information retrieval: homonyms: *latex*
Consider the homonym: \textit{bank} \rightarrow commercial \textbf{bank}1 vs. river \textbf{bank}2

Now consider

1. \textit{A PCFG can be trained using derivation trees from a tree bank annotated by human experts}

Is this a new sense of \textit{bank}?
Polysemy

- Senses can be derived from a particular lexeme. This process is known as **polysemy**
 In previous case we would say that the use of *bank* is a sense derived from commercial *bank*\(^1\)
- In some cases, splitting into different lexemes has other supporting evidence: *bank*\(^1\) has Italian origin vs. *bank*\(^2\) has Scandinavian origin
 1. *A PCFG can be trained using a bank of derivation trees called a tree-bank annotated by human experts*
- How can we tell between homonyms and polysemous uses of a word?
Consider the case for a verb like serve

1. *Does United serve breakfast?*
2. *Does United serve Philadelphia?*
3. *Does United serve breakfast and dinner?*
4. *#Does United serve breakfast and Philadelphia?*
Consider a noun like *bank*

1. *How many senses does it have?*
2. *How are these senses related?*
3. *How can they be reliably distinguished?*

For NLP software, among these three questions, typically at runtime we need to automatically find the answer to the last question: given a word in context, map it to the correct lexeme: **word-sense disambiguation**
Keyword in context listing for plant as a noun.

Two senses of plant: living or factory.

Part of speech tagging is essential: ignore plant as a verb.
Word Sense Disambiguation: features

- Consider the input:

  ```
  that_WDT also_RB is_VBZ a_DT preserve_VB for_IN plant_NN ,_, animal_NN and_CC bird_NN life_NN
  ```

- Features that can help us determine the word sense:

  ```
  'W+1=,_,,’,
  'W-1=for_IN’,
  'W-2,W-1=preserve_VB,for_IN’,
  'W+1,W+2=,_,,animal_NN’,
  'W-1,W+1=for_IN,,,,’,
  'W+-K=that_WDT’,
  'W+-K=also_RB’,
  'W+-K=is_VBZ’,
  'W+-K=a_DT’,
  'W+-K=preserve_VB’,
  'W+-K=animal_NN’,
  'W+-K=and_CC’,
  'W+-K=bird_NN’,
  'W+-K=life_NN’
  ```
Word Sense Disambiguation: methods

- Several options for creating a system that does word-sense disambiguation
- Supervised learning:
 - Label training data.
 - Learn a classifier \(\Pr(\text{sense} \mid \text{features}) \)
- Unsupervised learning
 - Cluster sentences into two (or more) classes.
 - Label each class manually with the sense information.
- Bootstrapping
 - Use *seed rules* to identify some examples of almost sure cases of each sense.
 - Train a classifier on this data.
 - Use classifier to identify the sense for new examples, and iterate.
Word Sense Disambiguation: Decision Lists

- A Decision List is a simple classifier that is effective for word-sense disambiguation.
- For each feature, we get an estimate for the probability of the word sense.
- For example, consider factory sense (TECH) or living sense (BIO) for the word plant:
 - Consider the feature 'W+1=life'.
 - We might get the following counts from training data:

\[
\begin{align*}
\text{Count}(\text{TECH}, 'W+1=life') &= 1 \\
\text{Count}(\text{BIO}, 'W+1=life') &= 100
\end{align*}
\]

- Using these counts we derive an estimate for:

\[
P(\text{BIO} \mid 'W+1=life') = \frac{100 + \alpha}{101 + 2\alpha}
\]

- Interpret this probability as a rule: if feature is observed, label as sense with confidence \(P(\text{sense} \mid \text{feature})\).
- Set \(\alpha = 0.1\) (smoothing is essential in the next step).
Word Sense Disambiguation: Decision Lists

- A Decision List is a list of such rules sorted by strength.
- The strength of a rule is derived using the log odds of picking one sense over another:

\[
\text{strength}(\text{feature}) = \text{abs} \left(\log \left(\frac{P(\text{sense 1} \mid \text{feature})}{P(\text{sense 2} \mid \text{feature})} \right) \right)
\]

- For example,

<table>
<thead>
<tr>
<th>strength</th>
<th>feature</th>
<th>sense</th>
<th>(P(s \mid f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>'W-1=manufacturing_NN'</td>
<td>'TECH'</td>
<td>0.99</td>
</tr>
<tr>
<td>4.7</td>
<td>'W-1,W+1=manufacturing_NN,in_IN'</td>
<td>'TECH'</td>
<td>0.99</td>
</tr>
<tr>
<td>4.5</td>
<td>'W+-K=animal_NN'</td>
<td>'BIO'</td>
<td>0.99</td>
</tr>
<tr>
<td>4.5</td>
<td>'W+1=life_NN'</td>
<td>'BIO'</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>:</td>
</tr>
</tbody>
</table>

- To apply the decision list, use the strongest (first) rule that can be applied (the feature appears in the input).
Word Sense Disambiguation: Decision Lists

- Decision lists can be trained on labeled data.
- Yarowsky (1994) applies decision lists to accent restoration in French and Spanish:

<table>
<thead>
<tr>
<th>De-accented form</th>
<th>Accented form</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>cesse</td>
<td>cesse</td>
<td>53%</td>
</tr>
<tr>
<td></td>
<td>cessé</td>
<td>47%</td>
</tr>
<tr>
<td>coute</td>
<td>coûte</td>
<td>53%</td>
</tr>
<tr>
<td></td>
<td>coûté</td>
<td>47%</td>
</tr>
<tr>
<td>cote</td>
<td>côté</td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td>côte</td>
<td>28%</td>
</tr>
<tr>
<td></td>
<td>cote</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>coté</td>
<td>< 1%</td>
</tr>
</tbody>
</table>

- Task is to convert the de-accented form to the appropriate accented form.
- Very similar to word-sense disambiguation. (labeled data is easily constructed)
- Useful for automatic generation of accents while typing.
Yarowsky (1995) describes a bootstrapping approach for WSD for the following words:

<table>
<thead>
<tr>
<th>Word</th>
<th>Senses</th>
</tr>
</thead>
<tbody>
<tr>
<td>plant</td>
<td>living/factory</td>
</tr>
<tr>
<td>tank</td>
<td>vehicle/container</td>
</tr>
<tr>
<td>poach</td>
<td>steal/boil</td>
</tr>
<tr>
<td>palm</td>
<td>tree/hand</td>
</tr>
<tr>
<td>axes</td>
<td>grind/tools</td>
</tr>
<tr>
<td>sake</td>
<td>benefit/drink</td>
</tr>
<tr>
<td>bass</td>
<td>fish/music</td>
</tr>
<tr>
<td>space</td>
<td>volume/outer</td>
</tr>
<tr>
<td>motion</td>
<td>legal/physical</td>
</tr>
<tr>
<td>crane</td>
<td>bird/machine</td>
</tr>
</tbody>
</table>
Word Sense Disambiguation: Bootstrapping

- Expert picks a few seed rules (they should be strong rules)

 - *manufacturing plant* ⇒ TECH
 - *plant life* ⇒ BIO

- Apply seed rules on the unlabeled data.
- Bootstrapping Algorithm (Yarowsky 1995)
 - Train a decision list using the (partially labeled) data.
 - Use the original unlabeled data, and apply the decision list classifier only if the probability of prediction is greater than some threshold, say 0.97
 - Re-train a new decision list, and repeat this procedure until the labels for the data do not change.
Another useful property: “One Sense Per Discourse”.

Yarowsky (1995) observes that if the same word occurs multiple times in a document, then it is very likely to have the same word sense.

After the decision list is applied, this “one sense per discourse” property is applied to label all the target words in a document.

With just two seed rules, Yarowsky (1995) obtains 90.6% accuracy (average across all the words in previous slide).

With better seed rules, accuracy goes up to 95.5% accuracy.
Word Sense Disambiguation: Bootstrapping

Figure 1: Sample Initial State

A = SENSE-A training example
B = SENSE-B training example
? = currently unclassified training example
Life = Set of training examples containing the collocation "life".
"One Sense Per Discourse" applied to Document 348
Word Sense Disambiguation: Bootstrapping
Synonyms

- Synonyms: Different lexemes with the same meaning
 1. *How big/large is that plane?*
 2. *Would I be flying on a big/large or small plane?*

- Synonyms clash with polysemous meanings
 1. *Seema is my big sister*
 2. *#Seema is my large sister*
WordNet

- WordNet is an electronic database of word relationships, handcrafted from scratch by researchers at Princeton University (George Miller, Christine Fellbaum, et al.)
- WordNet contains 3 databases: for verbs, nouns and one for adjectives and adverbs

<table>
<thead>
<tr>
<th>Category</th>
<th>Unique Forms</th>
<th>Number of Senses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>94474</td>
<td>116317</td>
</tr>
<tr>
<td>Verb</td>
<td>10319</td>
<td>22066</td>
</tr>
<tr>
<td>Adjective</td>
<td>20170</td>
<td>29881</td>
</tr>
<tr>
<td>Adverb</td>
<td>4546</td>
<td>5677</td>
</tr>
</tbody>
</table>
Ask the question: how many senses per noun or verb? The distribution of senses follows Zipf’s (2nd) Law.

WordNet provides multiple lexeme entries for each word and for each part of speech, e.g. *plant* as noun has 3 senses; *plant* as verb has 2 senses.

WordNet also provides *domain-independent* lexical relations such as IS-A, HasMember, MemberOf, ...
WordNet: noun relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernym</td>
<td>this is a kind of</td>
<td>breakfast → meal</td>
</tr>
<tr>
<td>Hyponym</td>
<td>this has a specific instance</td>
<td>meal → lunch</td>
</tr>
<tr>
<td>Has-Member</td>
<td>this has a member</td>
<td>faculty → professor</td>
</tr>
<tr>
<td>Member-Of</td>
<td>this is member of a group</td>
<td>copilot → crew</td>
</tr>
<tr>
<td>Has-Part</td>
<td>this has a part</td>
<td>table → leg</td>
</tr>
<tr>
<td>Part-Of</td>
<td>this is part of</td>
<td>course → meal</td>
</tr>
<tr>
<td>Antonym</td>
<td>this is an opposite of</td>
<td>leader → follower</td>
</tr>
</tbody>
</table>
WordNet: verb relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernym</td>
<td>this event is a kind of</td>
<td>fly → travel</td>
</tr>
<tr>
<td>Tropynym</td>
<td>this event has a subtype</td>
<td>walk → stroll</td>
</tr>
<tr>
<td>Entails</td>
<td>this event entails</td>
<td>snore → sleep</td>
</tr>
<tr>
<td>Antonym</td>
<td>this event is opposite of</td>
<td>increase → decrease</td>
</tr>
</tbody>
</table>
Sense1: Canada
 ⇒ North American country, North American nation
 ⇒ country, state, land
 ⇒ administrative district, administrative division, territorial division
 ⇒ district, territory
 ⇒ region
 ⇒ location
 ⇒ entity, physical thing
WordNet: example from ver1.7.1

Sense 3: Vancouver
⇒ city, metropolis, urban center
 ⇒ municipality
 ⇒ urban area
 ⇒ geographical area
 ⇒ region
 ⇒ location
 ⇒ entity, physical thing
⇒ administrative district, territorial division
⇒ district, territory
⇒ region
⇒ location
⇒ entity, physical thing
⇒ port
⇒ geographic point
⇒ point
⇒ location
⇒ entity, physical thing
A **synset** in WordNet is a list of synonyms (interchangeable words)

{ chump, fish, fool, gull, mark, patsy, fall guy, sucker, schlemiel, shlemiel, soft touch, mug }

How can we use this information like synsets, hypernyms, etc. from WordNet to benefit NLP applications?

Consider one example: PP attachment, words plus word classes extracted from the hypernym hierarchy increase accuracy from 84% to 88% (Stetina and Nagao, 1998)
Another example of WordNet used in NLP applications: selectional restrictions

We have considered subcategorization:

\[VP-\text{with-}NP-\text{complement} \rightarrow V(eat) \ NP \] "eat six bowls of rice"

But not selectional restrictions of the verb itself: "eat tomorrow"

Consider what do you want to eat tomorrow

We can use the synset \{ food, nutrient \} to describe the NP argument of eat – then the 60K lexemes under these nodes in the WordNet hierarchy will be acceptable.

(however, what about “eat my shorts”)

→ several other applications have been explored