Cross-Entropy and Perplexity

Smoothing n-gram Models
- Add-one Smoothing
- Additive Smoothing
- Good-Turing Smoothing
- Backoff Smoothing
- Event Space for n-gram Models
How good is a model

- So far we’ve seen the probability of a sentence: \(P(w_0, \ldots, w_n) \)
- What is the probability of a collection of sentences, that is what is the probability of a corpus
- Let \(T = s_0, \ldots, s_m \) be a text corpus with sentences \(s_0 \) through \(s_m \)
- What is \(P(T) \)?
 Let us assume that we trained \(P(\cdot) \) on some *training data*, and \(T \) is the *test data*
How good is a model

- $T = s_0, \ldots, s_m$ is the text corpus with sentences s_0 through s_m
- $P(T) = \prod_{i=0}^{m} P(s_i)$
- $P(s_i) = P(w^i_0, \ldots, w^i_n)$
- Let W_T be the length of the text T measured in words
- Then for the unigram model, $P(T) = \prod_{w \in T} P(w)$
- A problem: we want to compare two different models P_1 and P_2 on T
- To do this we use the per word perplexity of the model:

$$PP_P(T) = P(T)^{-\frac{1}{W_T}} = W_T \sqrt{\frac{1}{P(T)}}$$
How good is a model

▶ The *per word* perplexity of the model is:

\[PP_P(T) = P(T)^{-\frac{1}{W_T}} \]

▶ Recall that \(PP_P(T) = 2^{H_P(T)} \) where \(H_P(T) \) is the cross-entropy of \(P \) for text \(T \).

▶ Therefore, \(H_P(T) = \log_2 PP_P(T) = -\frac{1}{W_T} \log_2 P(T) \)

▶ Above we use a unigram model \(P(w) \), but the same derivation holds for bigram, trigram, . . .
How good is a model

- Lower cross entropy values and perplexity values are better. Lower values mean that the model is *better*.

- Correlation with performance of the language model in various applications.

- Performance of a language model is its cross-entropy or perplexity on *test data* (unseen data) corresponds to the number of bits required to encode that data.

- On various real life datasets, typical perplexity values yielded by *n*-gram models on English text range from about 50 to almost 1000 (corresponding to cross entropies from about 6 to 10 bits/word).
Cross-Entropy and Perplexity

Smoothing n-gram Models
- Add-one Smoothing
- Additive Smoothing
- Good-Turing Smoothing
- Backoff Smoothing
- Event Space for n-gram Models
Bigram Models

In practice:

\[
P(\text{Mork read a book}) = P(\text{Mork} \mid < \text{start} >) \times P(\text{read} \mid \text{Mork}) \times P(a \mid \text{read}) \times P(\text{book} \mid a) \times P(< \text{stop} > \mid \text{book})
\]

\[
P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}
\]

On unseen data, \(c(w_{i-1}, w_i)\) or worse \(c(w_{i-1})\) could be zero

\[
\sum_{w_i} \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} = ?
\]
Smoothing deals with events that have been observed zero times.

Smoothing algorithms also tend to improve the accuracy of the model.

\[P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \]

Not just unobserved events: what about events observed once?
Add-one Smoothing

\[P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \]

- Add-one Smoothing:

\[P(w_i \mid w_{i-1}) = \frac{1 + c(w_{i-1}, w_i)}{V + c(w_{i-1})} \]

- Let \(V \) be the number of words in our vocabulary
 Assign count of 1 to unseen bigrams
Add-one Smoothing

\[P(\text{Mindy read a book}) = \]
\[P(\text{Mindy} \mid < \text{start} >) \times P(\text{read} \mid \text{Mindy}) \times \]
\[P(\text{a} \mid \text{read}) \times P(\text{book} \mid \text{a}) \times \]
\[P(< \text{stop} > \mid \text{book}) \]

- Without smoothing:
 \[P(\text{read} \mid \text{Mindy}) = \frac{c(\text{Mindy, read})}{c(\text{Mindy})} = 0 \]

- With add-one smoothing (assuming \(c(\text{Mindy}) = 1 \) but \(c(\text{Mindy, read}) = 0 \)):
 \[P(\text{read} \mid \text{Mindy}) = \frac{1}{V + 1} \]
Additive Smoothing: (Lidstone 1920, Jeffreys 1948)

\[P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \]

- Add-one smoothing works horribly in practice. Seems like 1 is too large a count for unobserved events.

- Additive Smoothing:

\[P(w_i \mid w_{i-1}) = \frac{\delta + c(w_{i-1}, w_i)}{(\delta \times V) + c(w_{i-1})} \]

- \(0 < \delta \leq 1\)
Still works horribly in practice, but better than add-one smoothing.
Good-Turing Smoothing: (Good, 1953)

\[
P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}
\]

- Imagine you’re sitting at a sushi bar with a conveyor belt.
- You see going past you 10 plates of tuna, 3 plates of unagi, 2 plates of salmon, 1 plate of shrimp, 1 plate of octopus, and 1 plate of yellowtail.
- Chance you will observe a new kind of seafood: \(\frac{3}{18} \)
- How likely are you to see another plate of salmon: should be \(< \frac{2}{18} \)
Good-Turing Smoothing

- How many types of seafood (words) were seen once? Use this to predict probabilities for unseen events
- Let n_1 be the number of events that occurred once: $p_0 = \frac{n_1}{N}$
- The Good-Turing estimate states that for any n-gram that occurs r times, we should pretend that it occurs r^* times

$$r^* = (r + 1) \frac{n_r+1}{n_r}$$
Good-Turing Smoothing

- 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

- How likely is new data? Let n_1 be the number of items occurring once, which is 3 in this case. N is the total, which is 18.

$$p_0 = \frac{n_1}{N} = \frac{3}{18} = 0.166$$
Good-Turing Smoothing

- 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

- How likely is octopus? Since \(c(\text{octopus}) = 1 \) the GT estimate is \(1^* \).

\[
r^* = (r + 1) \frac{n_{r+1}}{n_r}
\]

\[
p_{GT} = \frac{r^*}{N}
\]

- To compute \(1^* \), we need \(n_1 = 3 \) and \(n_2 = 1 \)

\[
1^* = 2 \times \frac{1}{3} = \frac{2}{3}
\]

\[
p_1 = \frac{1^*}{18} = 0.037
\]

- What happens when \(n_{r+1} = 0 \)? (smoothing before smoothing)
Simple Good-Turing: linear interpolation for missing n_{r+1}

\[f(r) = a + b \times r \]

\[
\begin{align*}
a &= 2.3 \\
b &= -0.17
\end{align*}
\]

\[
\begin{array}{c|c}
 r & n_r = f(r) \\
\hline
1 & 2.14 \\
2 & 1.97 \\
3 & 1.80 \\
4 & 1.63 \\
5 & 1.46 \\
6 & 1.29 \\
7 & 1.12 \\
8 & 0.95 \\
9 & 0.78 \\
10 & 0.61 \\
11 & 0.44 \\
\end{array}
\]
Comparison between Add-one and Good-Turing

<table>
<thead>
<tr>
<th>freq</th>
<th>num with freq</th>
<th>freq r</th>
<th>NS</th>
<th>Add1</th>
<th>SGT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>n_r</td>
<td>p_r</td>
<td>p_r</td>
<td>p_r</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0294</td>
<td>0.12</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.04</td>
<td>0.0588</td>
<td>0.03079</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.08</td>
<td>0.0882</td>
<td>0.06719</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.12</td>
<td>0.1176</td>
<td>0.1045</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.2</td>
<td>0.1764</td>
<td>0.1797</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.4</td>
<td>0.3235</td>
<td>0.3691</td>
<td></td>
</tr>
</tbody>
</table>

- \(N = (1 \times 3) + (2 \times 2) + 3 + 5 + 10 = 25 \)
- \(V = 1 + 3 + 2 + 1 + 1 + 1 = 9 \)
- Important: we added a new word type for unseen words. Let’s call it UNK, the unknown word.
- Check that: \(1.0 = \sum_r n_r \times p_r \)
 \[0.12 + (3 \times 0.03079) + (2 \times 0.06719) + 0.1045 + 0.1797 + 0.3691 = 1.0 \]
Comparison between Add-one and Good-Turing

<table>
<thead>
<tr>
<th>freq</th>
<th>num with freq</th>
<th>r</th>
<th>NS</th>
<th>Add1</th>
<th>SGT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0.0294</td>
<td>0.12</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0294</td>
<td>0.12</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0.04</td>
<td>0.0588</td>
<td>0.03079</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.08</td>
<td>0.0882</td>
<td>0.06719</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0.12</td>
<td>0.1176</td>
<td>0.1045</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0.2</td>
<td>0.1764</td>
<td>0.1797</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>0.4</td>
<td>0.3235</td>
<td>0.3691</td>
</tr>
</tbody>
</table>

- **NS** = No smoothing: $p_r = \frac{r}{N}$
- **Add1** = Add-one smoothing: $p_r = \frac{1+r}{V+N}$
- **SGT** = Simple Good-Turing: $p_0 = \frac{n_1}{N}$, $p_r = \frac{(r+1)\frac{n_{r+1}}{n_r}}{N}$

with linear interpolation for missing values where $n_{r+1} = 0$ (Gale and Sampson, 1995) http://www.grsampson.net/AGtf1.html
Simple Backoff Smoothing: incorrect version

\[P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \]

- In add-one or Good-Turing:
 \[P(\text{the} \mid \text{string}) = P(\text{Fonz} \mid \text{string}) \]
- If \(c(w_{i-1}, w_i) = 0 \), then use \(P(w_i) \) (back off)
- Works for trigrams: back off to bigrams and then unigrams
- Works better in practice, but probabilities get mixed up (unseen bigrams, for example will get higher probabilities than seen bigrams)
Backoff Smoothing: Jelinek-Mercer Smoothing

\[P_{ML}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \]

- \[P_{JM}(w_i \mid w_{i-1}) = \lambda P_{ML}(w_i \mid w_{i-1}) + (1 - \lambda) P_{ML}(w_i) \]
 where, \(0 \leq \lambda \leq 1 \)

- Notice that \(P_{JM}(\text{the} \mid \text{string}) > P_{JM}(\text{Fonz} \mid \text{string}) \) as we wanted

- Jelinek-Mercer (1980) describe an elegant form of this interpolation:
 \[P_{JM}(n\text{gram}) = \lambda P_{ML}(n\text{gram}) + (1 - \lambda) P_{JM}(n - 1\text{gram}) \]

- What about \(P_{JM}(w_i) \)?
 For missing unigrams: \(P_{JM}(w_i) = \lambda P_{ML}(w_i) + (1 - \lambda) \frac{\delta}{V} \)
Backoff Smoothing: Many alternatives

\[P_{JM}(n\text{gram}) = \lambda P_{ML}(n\text{gram}) + (1 - \lambda)P_{JM}(n-1\text{gram}) \]

- Different methods for finding the values for \(\lambda \) correspond to variety of different smoothing methods
- Katz Backoff (include Good-Turing with Backoff Smoothing)

\[P_{katz}(y \mid x) = \begin{cases} \ \frac{c^*(xy)}{c(x)} & \text{if } c(xy) > 0 \\ \alpha(x)P_{katz}(y) & \text{otherwise} \end{cases} \]

- where \(\alpha(x) \) is chosen to make sure that \(P_{katz}(y \mid x) \) is a proper probability

\[\alpha(x) = 1 - \sum_y \frac{c^*(xy)}{c(x)} \]
Backoff Smoothing: Many alternatives

\[P_{JM}(n\text{gram}) = \lambda P_{ML}(n\text{gram}) + (1 - \lambda)P_{JM}(n-1\text{gram}) \]

- Deleted Interpolation (Jelinek, Mercer)
 compute \(\lambda \) values to minimize cross-entropy on held-out data which is deleted from the initial set of training data
- Improved JM smoothing, a separate \(\lambda \) for each \(w_{i-1} \):
 \[P_{JM}(w_i \mid w_{i-1}) = \lambda(w_{i-1})P_{ML}(w_i \mid w_{i-1}) + (1 - \lambda(w_{i-1}))P_{ML}(w_i) \]
 where \(\sum_i \lambda(w_i) = 1 \) because \(\sum_{w_i} P(w_i \mid w_{i-1}) = 1 \)
Backoff Smoothing: Many alternatives

\[P_{JM}(n\text{gram}) = \lambda P_{ML}(n\text{gram}) + (1 - \lambda) P_{JM}(n - 1\text{gram}) \]

- Witten-Bell smoothing
 use the \(n - 1 \) gram model when the \(n \) gram model has too few unique words in the \(n \) gram context

- Absolute discounting (Ney, Essen, Kneser)

\[
P_{abs}(y \mid x) = \begin{cases}
\frac{c(xy) - D}{c(x)} & \text{if } c(xy) > 0 \\
\alpha(x) P_{abs}(y) & \text{otherwise}
\end{cases}
\]

compute \(\alpha(x) \) as was done in Katz smoothing
Backoff Smoothing: Many alternatives

\[P_{JM}(ngram) = \lambda P_{ML}(ngram) + (1 - \lambda) P_{JM}(n-1gram) \]

- **Kneser-Ney smoothing**

 \[P(\text{Francisco} \mid \text{eggplant}) > P(\text{stew} \mid \text{eggplant}) \]

 - *Francisco* is common, so interpolation gives \(P(\text{Francisco} \mid \text{eggplant}) \) a high value
 - But *Francisco* occurs in few contexts (only after *San*)
 - *stew* is common, and occurs in many contexts
 - Hence weight the interpolation based on number of contexts for the word using discounting
Backoff Smoothing: Many alternatives

\[
P_{JM}(ngram) = \lambda P_{ML}(ngram) + (1 - \lambda)P_{JM}(n - 1\text{gram})
\]

- Modified Kneser-Ney smoothing (Chen and Goodman) multiple discounts for one count, two counts and three or more counts
- Finding \(\lambda \): use Generalized line search (Powell search) or the Expectation-Maximization algorithm
Trigram Models

- Revisiting the trigram model:
 \[P(w_1, w_2, \ldots, w_n) = \]
 \[P(w_1) \times P(w_2 \mid w_1) \times P(w_3 \mid w_1, w_2) \times P(w_4 \mid w_2, w_3) \times \]
 \[\ldots P(w_i \mid w_{i-2}, w_{i-1}) \ldots \times P(w_n \mid w_{n-2}, \ldots, w_{n-1}) \]

- Notice that the length of the sentence \(n \) is variable

- What is the event space?
Let $\Sigma = \{a, b\}$ and the language be Σ^* so $L = \{\epsilon, a, b, aa, bb, ab, bb\ldots\}$

Consider a unigram model: $P(a) = P(b) = 0.5$

$P(a) = 0.5, P(b) = 0.5, P(aa) = 0.5^2 = 0.25, P(bb) = 0.25$ and so on.

But $P(a) + P(b) + P(aa) + P(bb) = 1.5$!!
The stop symbol

► What went wrong?
No probability for $P(\epsilon)$

► Add a special stop symbol:

\[
P(a) = P(b) = 0.25
\]

\[
P(\text{stop}) = 0.5
\]

► $P(\text{stop}) = 0.5$,

\[
P(a \text{ stop}) = P(b \text{ stop}) = 0.25 \times 0.5 = 0.125,
\]

\[
P(aa \text{ stop}) = 0.25^2 \times 0.5 = 0.03125 \text{ (now the sum is no longer greater than one)}
\]
The stop symbol

With this new stop symbol we can show that \(\sum_w P(w) = 1 \)

Notice that the probability of any sequence of length \(n \) is \(0.25^n \times 0.5 \)

Also there are \(2^n \) sequences of length \(n \)

\[
\sum_w P(w) = \\
\sum_{n=0}^{\infty} 2^n \times 0.25^n \times 0.5 \\
\sum_{n=0}^{\infty} 0.5^n \times 0.5 = \sum_{n=0}^{\infty} 0.5^{n+1} \\
\sum_{n=1}^{\infty} 0.5^n = 1
\]