CMPT-755
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop
Programming Languages and Formal Language Theory

• We ask the question: Does a particular formal language describe some key aspect of a programming language

• Then we find out if that language isn’t in a particular language class
Programming Languages and Formal Language Theory

• For example, if we abstract some aspect of the programming language structure to the formal language:
 \(\{ww^R \mid \text{where } w \in \{a, b\}^*, w^R \text{ is the reverse of } w\} \) we can then ask if this language is a regular language

• If this is false, i.e. the language is not regular, then we have to go beyond regular languages
Defining the Set of Regular Languages

• A regular language is a set of strings constructed as follows:

 – \emptyset is a RL

 – $\forall x \in \Sigma \cup \epsilon, \{x\}$ is a RL

 – If L_1 and L_2 are RLs then the following are RLs,

 1. $L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$

 2. $L_1 \cup L_2$

 3. L_1^*
Recursion in Regular Languages

- Consider a regular expression for arithmetic expressions:
 \[2 + 3 \times 4\]
 \[8 \times 10 + -24\]
 \[2 + 3 \times -2 + 8 + 10\]

 ^s*-?s*d+s*(\(+\|*\)s*-?s*d+s*)*$

- *Can we compute the meaning of these expressions?*
Recursion in Regular Languages

- Construct the finite state automata and associate the meaning with the state sequence

- However, this solution is missing something crucial about arithmetic expressions – *what is it?*
Do Programming Languages belong to Regular Languages

• Consider the following arithmetic expressions

 – (((2) + (3)) ∗ (4))

 – ((8) ∗ ((10) + (−24)))

• Map (→ a and) → b. Map everything else to ε.

• This results in strings like $aaababbabb$ and $aabaababbb$

• What is a good description of this language? Let’s call it L
Pumping Lemma proofs

- Is L a regular language?

- To show something is not a regular language, we use the **pumping lemma**

- For any infinite set of strings generated by a finite-state machine if you consider a string that is long enough from this set, there has to be a loop which visits the same state at least twice (from *the pigeonhole principle*).

- Thus, in a regular language L, there are strings x, y, z such that $xy^n z \in L$ for $n \geq 0$ where $y \neq \epsilon$.
Pumping Lemma proofs

• Let L' be the intersection of L with the language L_1 defined by the regular expression a^*b^*

• Intersect the set $L = \{\varepsilon, ab, abab, aabb, \ldots\}$ with $L_1 = \{\varepsilon, a, b, aa, ab, aab, abb, bb, \ldots\}$

• Recall that RLs are closed under intersection, so L' must also be a RL. In fact, we can describe L' as the language $a^n b^n$ for $n \geq 0$
Pumping Lemma proofs

• For any choice of \(y \) (consider \(a^i \) or \(a^i b \) or \(b^i \)) if we multiply \(y^n \) for \(n \geq 0 \) we get strings that are not in \(L' \)

• For example, for a string \(aaabbb \) if we pick \(y = ab \) and pick \(n = 2 \) we get a string \(aaababbb \) which is not in \(L' \)

• Hence, the pumping lemma leads to the conclusion that \(L' \) is \textbf{not} regular

• This implies that \(L \) is not regular since RLs are closed under intersection

• What lies beyond the set of regular languages?
The Chomsky Hierarchy

- **unrestricted** or **type-0** grammars, generate the *recursively enumerable* languages, automata equals *Turing machines*

- **context-sensitive** or **type-1** grammars, generate the *context-sensitive* languages, automata equals *Linear Bounded Automata*

- **context-free** or **type-2** grammars, generate the *context-free* languages, automata equals *Pushdown Automata*

- **regular** or **type-3** grammars, generate the *regular* languages, automata equals *Finite-State Automata*
The Chomsky Hierarchy
A system of grammars $G = (N, T, P, S)$

- T is a set of symbols called terminal symbols. Also called the alphabet Σ
- N is a set of non-terminals, where $N \cap T = \emptyset$
 Some notation: $\alpha, \beta, \gamma \in (N \cup T)^*$
 N is sometimes called the set of variables V
- P is a set of production rules that provide a finite description of an infinite set of strings (a language)
- S is the start non-terminal symbol (similar to the start state in a FSA)
Languages

• Language defined by G: $L(G)$

 − $L(G)$: set of strings $w \in T^*$ derived from S

 − $S \Rightarrow^+ w$ (derives in 1 or more steps using rules in P)

 − w is a sentence of G

 − Sentential form: $S \Rightarrow^+ \alpha$ and α contains a mix of terminals and non-terminals

• Two grammars G_1 and G_2 are equivalent if $L(G_1) = L(G_2)$
The Chomsky Hierarchy:

\[G = (N, T, P, S) \] where, \(\alpha, \beta, \gamma \in (N \cup T)^* \)

- **unrestricted** or **type-0** grammars: \(\alpha \rightarrow \gamma \), such that \(\alpha \neq \epsilon \)

- **context-sensitive** or **type-1** grammars: \(\alpha \rightarrow \gamma \), where \(|\gamma| \geq |\alpha| \)

 CSG Normal Form: \(\alpha A \beta \rightarrow \alpha \gamma \beta \), such that \(\gamma \neq \epsilon \) and \(S \rightarrow \epsilon \) if \(\epsilon \in L(G) \)

- **context-free** or **type-2** grammars: \(A \rightarrow \gamma \)

- **regular** or **type-3** grammars: \(A \rightarrow a B \) or \(A \rightarrow a \)
Regular grammars: right-linear CFG: \(L(G) = L(a^*b^*) \)

\[
\begin{align*}
A & \to aA \\
A & \to \epsilon \\
A & \to bB \\
B & \to bB \\
B & \to \epsilon
\end{align*}
\]

• Input: \(bb \)

• Derivation using sentential forms: \(A \Rightarrow bB \Rightarrow bbB \Rightarrow bb\epsilon = bb \)
Context-free grammars: $L(G) = \{a^n b^n \mid n \geq 0\}$

$S \rightarrow a S b$

$S \rightarrow \epsilon$

- Input: $aabb$

- Derivation using sentential forms:
 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaebb = aabb$
Context-free grammars: \(L(G) = \{a^n \mid n \geq 0 \} \)

\[
\begin{align*}
S & \rightarrow S \ S \\
S & \rightarrow a
\end{align*}
\]

• Input: \(aaaaa \)

• Derivation using sentential forms:
 \[
 S \Rightarrow SS \Rightarrow aS \Rightarrow aSS \Rightarrow aaS \Rightarrow aaSS \Rightarrow aaaS \Rightarrow aaaa
 \]

• But what about another derivation:
 \[
 S \Rightarrow SS \Rightarrow SSS \Rightarrow SSSS \Rightarrow aSSS \Rightarrow \ldots \Rightarrow aaaa
 \]

• Key problem with CFGs: **ambiguity**
Context-sensitive grammars: \(L(G) = \{a^n b^n \mid n \geq 1\} \)

\[
\begin{align*}
S & \rightarrow S \ B \ C \\
S & \rightarrow a \ C \\
a \ B & \rightarrow a \ a \\
C \ B & \rightarrow B \ C \\
B \ a & \rightarrow a \ a \\
C & \rightarrow b
\end{align*}
\]
Context-sensitive grammars: $L(G) = \{a^n b^n \mid n \geq 1\}$

$$
\begin{align*}
S_1 \\
S_2 & B_1 C_1 \\
S_3 & B_2 C_2 B_1 C_1 \\
a_3 & C_3 B_2 C_2 B_1 C_1 \\
a_3 & B_2 C_3 C_2 B_1 C_1 \\
a_3 & a_2 C_3 C_2 B_1 C_1 \\
a_3 & a_2 C_3 B_1 C_2 C_1 \\
a_3 & a_2 B_1 C_3 C_2 C_1 \\
a_3 & a_2 a_1 C_3 C_2 C_1 \\
a_3 & a_2 a_1 b_3 b_2 b_1
\end{align*}
$$
Unrestricted grammars: $L(G) = \{a^{2i} \mid i \geq 1\}$

\[
\begin{align*}
S & \rightarrow AC a B \\
Ca & \rightarrow aa C \\
CB & \rightarrow DB \\
CB & \rightarrow E \\
aD & \rightarrow Da \\
AD & \rightarrow AC \\
aE & \rightarrow Ea \\
AE & \rightarrow \epsilon
\end{align*}
\]
Unrestricted grammars: $L(G) = \{a^{2i} \mid i \geq 1\}$

```
S
A C a B
A a a C B
A a a E
A a E a
A E a a
  a a
```
Unrestricted grammars: $L(G) = \{a^{2i} \mid i \geq 1\}$

- A and B serve as left and right end-markers for sentential forms (derivation of each string)

- C is a marker that moves through the string of a's between A and B, doubling their number using $C \ a \rightarrow a \ a \ C$

- When C hits right end-marker B, it becomes a D or E by $C \ B \rightarrow D \ B$ or $C \ B \rightarrow E$

- If a D is chosen, that D migrates left using $a \ D \rightarrow D \ a$ until left end-marker A is reached
Unrestricted grammars: $L(G) = \{a^{2i} | i \geq 1\}$

- At that point D becomes C using $A D \rightarrow A C$ and the process starts over.

- Finally, E migrates left until it hits left end-marker A using $a E \rightarrow E a$.

- Note that $L(G) = \{a^{2i} | i \geq 1\}$ can also be written as a context-sensitive grammar.
Examples of Languages in the Chomsky Hierarchy

- **context-sensitive** grammars: 0^i, i is not a prime number and $i > 0$

- **indexed** grammars: $0^n1^n2^n \ldots m^n$, for any fixed m and $n \geq 0$

- **context-free** grammars: 0^n1^n for $n \geq 0$

- **deterministic context-free** grammars: $S' \rightarrow S \ c$, $S \rightarrow S \ A \ | \ A$, $A \rightarrow a \ S \ b \ | \ ab$: the language of "balanced parentheses"

- **regular** grammars: $(0|1)^*00(0|1)^*$
<table>
<thead>
<tr>
<th>Language</th>
<th>Automaton</th>
<th>Grammar</th>
<th>Recognition</th>
<th>Dependency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursively Enumerable Languages</td>
<td>Turing Machine</td>
<td>Unrestricted</td>
<td>Undecidable</td>
<td>Arbitrary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baa → A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context-Sensitive Languages</td>
<td>Linear-Bounded</td>
<td>Context-Sensitive</td>
<td>NP-Complete</td>
<td>Crossing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At → aA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context-Free Languages</td>
<td>Pushdown (stack)</td>
<td>Context-Free</td>
<td>Polynomial</td>
<td>Nested</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S → gSc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular Languages</td>
<td>Finite-State Machine</td>
<td>Regular</td>
<td>Linear</td>
<td>Strictly Local</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A → cA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complexity of Parsing Algorithms

- Given grammar G and input x, provide algorithm for: Is $x \in L(G)$?

 - **unrestricted**: undecidable

 - **context-sensitive**: $\text{NSPACE}(n)$ – linear non-deterministic space

 - **indexed** grammars: NP-Complete

 - **context-free**: $O(n^3)$

 - **deterministic context-free**: $O(n)$

 - **regular** grammars: $O(n)$
Verifying that $L = L(G)$

- Let's say we have a context-free grammar G and a description of a language L

- How can we say for sure that $L = L(G)$?

- By verifying the statement in two directions:
 \Rightarrow All strings generated by G are in L
 \Leftarrow All strings $w \in L$ can be generated by G
Verifying that $L = L(G)$

- Example: $T = \{a, b\}$. Consider language L to be “all strings with same number of as and bs”

- Consider G to be a CFG: $S \rightarrow \epsilon | a S b S | b S a S$

- To verify that $L = L(G)$, prove that
 \[\Rightarrow \text{All strings generated by } G \text{ are in } L \]
 \[\Leftarrow \text{All strings } w \in L \text{ can be generated by } G \]
Proof (\Rightarrow): All strings generated by G are in L

- Proof by induction:

 - **Base case**: ϵ is in L (trivial)

 - **Inductive hypothesis**: Assume $u \in L$ and $v \in L$. Let w be generated by G with $|u| < |w|$ and $|v| < |w|$.

 * Because w is generated by G then either $w \Rightarrow a\ u\ b\ v$ or $w \Rightarrow b\ u\ a\ v$, where u and v are generated by G.

 * Since $|u| < |w|$ and $|v| < |w|$ and $u, v \in L$ then since we only added a single matching a, b pair, we can conclude that w is in L.
Proof (\Leftarrow): All strings $w \in L$ can be generated by G

- Proof by induction (show that $S \Rightarrow^+ w$):

 - **Base case**: $w = \epsilon$ (trivial: $S \rightarrow \epsilon$)

 - **Inductive hypothesis**: For a given $w \in L$, assume that for all $u, v \in L$ where $|u| < |w|$ and $|v| < |w|$ we have $S \Rightarrow^+ u$ and $S \Rightarrow^+ v$

 * **Case 1 – w starts with a**: Find the first b from the right so that $w = a u b v$ and v has the same number of as and bs.
 Because $w \in L$ it has to be true that $u, v \in L$ and by the inductive hypothesis $S \Rightarrow^+ u$ and $S \Rightarrow^+ v$
 Using rule $S \rightarrow a S b S$ and the above step we get $S \Rightarrow^+ w$

 * **Case 2 – w starts with b**: (analogous to Case 1)
CFG Ambiguity: Number of derivations grows exponentially

$L(G) = a^+$ using CFG rules \{ $S \rightarrow S \ S, \ S \rightarrow a$ \}
CFG Ambiguity

• Algebraic character of parse derivations

• Power Series for grammar for the (simplified) arithmetic expression CFG:
 \[E \rightarrow \text{digit} \mid E \text{ binop } E \]

• Write it down as an equation with coefficients equal to number of different analyses possible:

\[
E = \text{digit} + \text{digit binop digit} \\
+ 2(\text{digit binop digit binop digit}) \\
+ 5(\text{digit binop digit binop digit binop digit}) \\
+ 14\ldots
\]
CFG Ambiguity

- Coefficients in previous equation equal the number of parses for each string derived from E

- These ambiguity coefficients are Catalan numbers:

$$Cat(n) = \frac{1}{n + 1} \binom{2n}{n}$$

- $\binom{a}{b}$ is the binomial coefficient

$$\binom{a}{b} = \frac{a!}{b!(a - b)!}$$
Catalan numbers

- Why Catalan numbers? Cat(n) is the number of ways to parenthesize an expression of length n with two conditions:

 1. there must be equal numbers of open and close parens

 2. they must be properly nested so that an open precedes a close
Catalan numbers

- For an expression of length n there are a total of $2n$ choose n parenthesis pairs. But $n + 1$ of them have the right parenthesis to the left of its matching left parenthesis ())().

- So we divide $2n$ choose n by $n + 1$:

$$Cat(n) = \frac{1}{n + 1} \binom{2n}{n}$$
Catalan numbers

<table>
<thead>
<tr>
<th>n</th>
<th>$\text{catalan}(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>132</td>
</tr>
<tr>
<td>7</td>
<td>429</td>
</tr>
<tr>
<td>8</td>
<td>1430</td>
</tr>
<tr>
<td>9</td>
<td>4862</td>
</tr>
<tr>
<td>10</td>
<td>16796</td>
</tr>
</tbody>
</table>
Catalan numbers
Summary

- Aspects of PL structure cannot be represented by FSAs

- Pumping lemma proofs for proving a language is not regular

- Chomsky hierarchy: from FSAs to Turing machines

- Verifying that a particular language is generated by a grammar G

- Context-free grammars (seems sufficient for PLs) but problems with ambiguity