CMPT 755
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop
Code Optimization

- There is no fully optimizing compiler O
- Let’s assume O exists: it takes a program P and produces output Opt(P) which is the smallest possible
- Imagine a program Q that produces no output and never terminates, then Opt(Q) could be:
 L_1: goto L_1
- Then to check if a program P never terminates on some inputs, check if Opt($P(i)$) is equal to Opt(Q)
- Full Employment Theorem for Compiler Writers, see Rice(1953)
Optimizations

• Non-Optimizations
• Types of optimizations
• Correctness of optimizations
 – Optimizations must not change the meaning of the program
• Amdahl’s Law
• Moore’s Law
Non-Optimizations

enum { GOOD, BAD };
extern int test_condition();

void check() {
 int rc;
 rc = test_condition();
 if (rc != GOOD) {
 exit(rc);
 } else { // This version uses an else block
 exit(rc);
 }
}

Which version of check runs faster?
Types of Optimizations

• High-level optimizations
 – function inlining

• Machine-dependent optimizations
 – e.g., peephole optimizations, instruction scheduling

• Local optimizations or Transformations
 – within basic block

• Global optimizations or Data flow Analysis
 – across basic blocks
 – within one procedure (intraprocedural)
 – whole program (interprocedural)
 – pointers (alias analysis)
Maintaining Correctness

• What does this program output?

 3

 Not:
 $\text{decafcc byzero.decaf}$
 Floating exception

```c
void main() {
    int x;
    if (false) {
        x = 3/(3-3);
    } else {
        x = 3;
    }
    callout("print_int", x);
}
```
Peephole Optimization

• Redundant instruction elimination
 – If two instructions perform that same function and are in the same basic block, remove one
 – Redundant loads and stores
 li $t0, 3
 li $t0, 4
 – Remove unreachable code
 li $t0, 3
 goto L2
 ... (all of this code until next label can be removed)
Peephole Optimization

• Flow control optimization

goto L1

L1: goto L2

• Algebraic simplification

• Reduction in strength
 – Use faster instructions whenever possible

• Use of Machine Idioms

• Filling delay slots
Constant folding & propagation

• Constant folding
 – compute expressions with known values at compile time

• Constant propagation
 – if constant assigned to variable, replace uses of variable with constant unless variable is reassigned
Constant folding & propagation

- Copy Propagation

\[
\begin{align*}
 a &:= d + e \\
 b &:= d + e \\
 c &:= d + e \\
 t &:= d + e \\
 a &:= t \\
 b &:= t \\
 c &:= t
\end{align*}
\]
Transformations

• Structure preserving transformations
• Common subexpression elimination

\[
\begin{align*}
a &:= b + c \\
b &:= a - d \\
c &:= b + c \\
d &:= a - d \quad (\Rightarrow b)
\end{align*}
\]
Transformations

• Dead-code elimination (combines copy propagation with removal of unreachable code)

```java
if (debug) { f(); }  /* debug := false (as a constant) */
if (false) { f(); }  /* constant folding */
using deadcode elimination, code for f() is removed
x := t3          x := t3
```

```java
t4 := x  becomes  t4 := t3  becomes  t4 := t3
```
Transformations

• Renaming temporary variables
 \[t_1 := b+c \] can be changed to \[t_2 := b+c \]
 replace all instances of \(t_1 \) with \(t_2 \)

• Interchange of statements
 \[t_1 := b+c \]
 \[t_2 := x+y \]
 \[t_2 := x+y \] can be converted to \[t_1 := b+c \]
Transformations

• **Algebraic transformations**

 \[d := a + 0 \] \(\Rightarrow\) \(a\)

 \[d := d \cdot 1 \] \(\Rightarrow\) \textit{eliminate}

• **Reduction of strength**

 \[d := a \cdot a \]

 \[d := a \cdot a \] \(\Rightarrow\) \textit{eliminate}
int main() {
 extern int f(int);
 int i;
 int *a;
 for (i = 0;
 i < 10;
 i = i + 1)
 {
 a[i] = f(i);
 }
}
main:
 BeginFunc 72 ;
 i = 0 ;
L0:
 tmp1 = 10 ;
 tmp2 = i < tmp1 ;
 IfZ tmp2 Goto L1 ;
 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
goto L0 ;
L1:
 EndFunc ;
Dataflow Analysis

- $S \rightarrow \text{id} := E$
- $S \rightarrow S \ ; \ S$
- $S \rightarrow \text{if } E \text{ then } S \text{ else } S$
- $S \rightarrow \text{do } S \text{ while } E$
- $E \rightarrow \text{id} + \text{id}$
- $E \rightarrow \text{id}$
Dataflow Analysis

S ; S

if E then S else S

do S while E
Reaching definitions

\[S \rightarrow d: a := b+c \]

\[
\begin{align*}
gen[S] &= \{ d \} \\
kill[S] &= \text{def}(a) - \{ d \} \\
out[S] &= gen[S] \cup (\text{in}[S] - \text{kill}[S])
\end{align*}
\]
Reaching definitions

\[\text{gen}[S] = \text{gen}[S2] \cup (\text{gen}[S1] - \text{kill}[S2]) \]
\[\text{kill}[S] = \text{kill}[S2] \cup (\text{kill}[S1] - \text{gen}[S2]) \]
\[\text{in}[S1] = \text{in}[S] \]
\[\text{in}[S2] = \text{out}[S1] \]
\[\text{out}[S] = \text{out}[S2] \]
Reaching definitions

\[\text{gen}[S] = \text{gen}[S1] \cup \text{gen}[S2] \]
\[\text{kill}[S] = \text{kill}[S1] \cap (\text{kill}[S1] - \text{gen}[S2]) \]
\[\text{in}[S1] = \text{in}[S] \]
\[\text{in}[S2] = \text{in}[S] \]
\[\text{out}[S] = \text{out}[S1] \cup \text{out}[S2] \]

\[
\begin{array}{c}
S \\
\downarrow \\
S1 \\
\downarrow \\
S2 \\
\end{array}
\]
Reaching definitions

\[\text{gen}[S] = \text{gen}[S_1] \]
\[\text{kill}[S] = \text{kill}[S_1] \]
\[\text{in}[S_1] = \text{in}[S] \cup \text{gen}[S_1] \]
\[\text{out}[S] = \text{out}[S_1] \]

Iteratively find \(\text{out}[S]\) (fixed point)

out = synthesized attribute
in = inherited attribute

out\[S_1\] = gen\[S_1\] \(\cup\) (in\[S_1\] - kill\[S_1\])
Reaching definitions

B1

- d1: i := m-1
- d2: j := n
- d3: a := u1

gen[B1] = { d1, d2, d3 }
kill[B1] = { d4, d5, d6, d7 }

B2

- d4: i := i+1
- d5: j := j-1

gen[B2] = { d4, d5 }
kill[B2] = { d1, d2, d7 }

B3

- d6: a := u2

gen[B3] = { d6 }
kill[B3] = { d3 }

B4

- d7: i := u3

gen[B4] = { d7 }
kill[B4] = { d1, d4 }
Reaching definitions

\[
\begin{align*}
\text{B1: } & \text{ } \quad \text{d1: } i := m-1 \\
& \text{d2: } j := n \\
& \text{d3: } a := u1 \\
\text{B2: } & \text{ } \quad \text{d4: } i := i+1 \\
& \text{d5: } j := j-1 \\
\text{B3: } & \text{ } \quad \text{d6: } a := u2 \\
\text{B4: } & \text{ } \quad \text{d7: } i := u3
\end{align*}
\]

\[
\begin{align*}
\text{gen[B1]} &= \{ \text{d1, d2, d3} \} \\
\text{kill[B1]} &= \{ \text{d4, d5, d6, d7} \} \\
\text{gen[B2]} &= \{ \text{d4, d5} \} \\
\text{kill[B2]} &= \{ \text{d1, d2, d7} \} \\
\text{gen[B3]} &= \{ \text{d6} \} \\
\text{kill[B3]} &= \{ \text{d3} \} \\
\text{gen[B4]} &= \{ \text{d7} \} \\
\text{kill[B4]} &= \{ \text{d1, d4} \}
\end{align*}
\]

\[
in[B2] = \text{out[B1]} \cup \text{out[B3]} \cup \text{out[B4]}
\]
Reaching definitions

\[\text{B1} \]
\[d1: i := m-1 \]
\[d2: j := n \]
\[d3: a := u1 \]

\[\text{gen[B1]} = \{ d1, d2, d3 \} \]
\[\text{kill[B1]} = \{ d4, d5, d6, d7 \} \]

\[\text{B2} \]
\[d4: i := i+1 \]
\[d5: j := j-1 \]

\[\text{gen[B2]} = \{ d4, d5 \} \]
\[\text{kill[B2]} = \{ d1, d2, d7 \} \]

\[\text{B3} \]
\[d6: a := u2 \]

\[\text{gen[B3]} = \{ d6 \} \]
\[\text{kill[B3]} = \{ d3 \} \]

\[\text{B4} \]
\[d7: i := u3 \]

\[\text{gen[B4]} = \{ d7 \} \]
\[\text{kill[B4]} = \{ d1, d4 \} \]

\[\sqrt{ \text{out[B2]} = \text{gen[B2]} \cup (\text{in[B3]} - \text{kill[B2]}) } \]
\[\text{out[B2]} = \text{gen[B2]} \cup (\text{in[B4]} - \text{kill[B2]}) \]
Dataflow Analysis

• Compute Dataflow Equations over Control Flow Graph
 – Reaching Definitions (Forward)
 \[
 \text{out}[\text{BB}] := \text{gen}[\text{BB}] \cup (\text{in}[\text{BB}] - \text{kill}[\text{BB}])
 \]
 \[
 \text{in}[\text{BB}] := \bigcup \text{out}[s] : \text{forall } s \in \text{pred}[\text{BB}]
 \]
 – Liveness Analysis (Backward)
 \[
 \text{in}[\text{BB}] := \text{use}[\text{BB}] \cup (\text{out}[\text{BB}] - \text{def}[\text{BB}])
 \]
 \[
 \text{out}[\text{BB}] := \bigcup \text{in}[s] : \text{forall } s \in \text{succ}[\text{BB}]
 \]
• Computation by fixed-point analysis
SSA Form

• \textit{def-use} chains keep track of where variables were defined and where they were used
• Consider the case where each variable has only one definition in the intermediate representation
• One static definition, accessed many times
• Static Single Assignment Form (SSA)
SSA Form

- SSA is useful because
 - Dataflow analysis and optimization is simpler when each variable has only one definition
 - If a variable has N uses and M definitions (which use N+M instructions) it takes N*M to represent def-use chains
 - Complexity is the same for SSA but in practice it is usually linear in number of definitions
 - SSA simplifies the register interference graph
SSA Form

- Original Program

 a := x + y
 b := a - 1
 a := y + b
 b := x * 4
 a := a + b

- SSA Form

 a1 := x + y
 b1 := a1 - 1
 a2 := y + b1
 b2 := x * 4
 a3 := a2 + b2

what about conditional branches?
1: \(b := M[x] \)
 \(a := 0 \)
2: if \(b < 4 \)
3: \(a := b \)
4: \(c := a + b \)

1: \(b1 := M[x1] \)
 \(a1 := 0 \)
2: if \(b1 < 4 \)
3: \(a2 := b1 \)
4: \(a3 := \phi (a2, a1) \)
 \(c1 := a3 + b1 \)
SSA Form

1: a := 0

2: b := a + 1
c := c + b
a := b * 2
if a < N
3: return c

1: a1 := 0

2: a3 := φ(a2, a1)
b1 := φ(b0, b2)
c2 := φ(c0, c1)
b2 := a3 + 1
c1 := c1 + b2
a2 := b2 * 2
if a2 < N
3: return c1
Optimizations using SSA

• SSA form contains statements, basic blocks and variables
• Dead-code elimination
 – if there is a variable \(v \) with no uses and def of \(v \) has no side-effects, delete statement defining \(v \)
 – if \(z := \phi(x, y) \) then eliminate this stmt if no uses for \(x, y \)
Optimizations using SSA

• Constant Propagation
 – if \(v := c \) for some constant \(c \) then replace \(v \) with \(c \) for all uses of \(v \)
 – \(v := \phi(c_1, c_2, ..., c_n) \) where all \(c_i \) are equal to \(c \) can be replaced by \(v := c \)
Optimizations using SSA

1: \(i := 1 \) \(j := 1 \)
\(k := 0 \)

2: if \(k < 100 \)

3: if \(j < 20 \)

4: return \(j \)

5: \(j := i \)
\(k := k+1 \)

6: \(j := k \)
\(k := k+1 \)

7:
Optimizations using SSA

• Conditional Constant Propagation
 – In previous flow graph, is j always equal to 1?
 – If j = 1 always, then block 6 will never execute and so j := i and j := 1 always
 – If j > 20 then block 6 will execute, and j := k will be executed so that eventually j > 20
 – Which will happen? Using SSA we can find the answer.
Optimizations using SSA

1: \(i_1 := 1 \) \(j_1 := 1 \)
 \(k_1 := 0 \)

2: \(j_2 := \phi(j_4, j_1) \)
 \(k_2 := \phi(k_4, k_1) \)
 if \(k_2 < 100 \)

3: if \(j_2 < 20 \)

4: return \(j_2 \)

5: \(j_3 := i_1 \)
 \(k_3 := k_2 + 1 \)

6: \(j_5 := k_2 \)
 \(k_5 := k_2 + 1 \)

7: \(j_4 := \phi(j_3, j_5) \)
 \(k_4 := \phi(k_3, k_5) \)
Optimizations using SSA

1:

2: \(k2 := \phi(k4, 0) \)
if \(k2 < 100 \)

3:

4: return 1

5: \(k3 := k2 + 1 \)

7: \(k4 := \phi(k3) \)

After Constant Propagation
Optimizations using SSA

1:

2: \(k_2 := \phi(k_3, 0) \)
 if \(k_2 < 100 \)

5: \(k_3 := k_2 + 1 \)

4: return 1

After Removing Empty Blocks and 1-arg \(\phi \) functions
Optimizations using SSA

• Arrays, Pointers and Memory
 – For more complex programs, we need dependencies: how does statement B depend on statement A?
 – **Read after write**: A defines variable v, then B uses v
 – **Write after write**: A defines v, then B defines v
 – **Write after read**: A uses v, then B defines v
 – **Control**: A controls whether B executes
Optimizations using SSA

- Memory dependence
 \[
 M[i] := 4 \\
 x := M[j] \\
 M[k] := j
 \]
- We cannot tell if \(i, j, k\) are all the same value which makes any optimization difficult
- Similar problems with Control dependence
- SSA does not offer an easy solution to these problems
Conversion from a Control Flow Graph (created from TAC) into SSA Form is not trivial.

Two famous algorithms:
- Lengauer-Tarjan algorithm (see the Tiger book by Andrew W. Appel for more details)
- Harel algorithm
More on Optimization

- *Advanced Compiler Design and Implementation* by Steven S. Muchnick
- Control Flow Analysis
- Data Flow Analysis
- Dependence Analysis
- Alias Analysis
- Early Optimizations
- Redundancy Elimination
- Loop Optimizations
- Procedure Optimizations
- Code Scheduling (pipelining)
- Low-level Optimizations
- Interprocedural Analysis
- Memory Hierarchy
Amdahl’s Law

- \(\text{Speedup}_{\text{total}} = ((1 - \text{Time}_{\text{Fraction optimized}}) + \frac{\text{Time}_{\text{Fraction optimized}}}{\text{Speedup}_{\text{optimized}}}) - 1 \)
- Optimize the common case, 90/10 rule
- Requires quantitative approach
 - Profiling + Benchmarking
- Problem: Compiler writer doesn’t know the application beforehand
Moore’s Law

• Speed per $ doubles every 18 months
• How long do you have to wait until a new processor obsoletes your +5% performance improvement?
• And how does that feel if the optimization was machine-specific?)
Summary

• Optimizations can improve speed, while maintaining correctness
• Various early optimization steps
• Global optimizations = dataflow analysis
• Reachability and Liveness analysis provides dataflow analysis
• Static Single-Assignment Form (SSA)