CMPT-825
Natural Language Processing

Anoop Sarkar

http://www.cs.sfu.ca/~anoop
Why are parsing algorithms important?

- A linguistic theory is implemented in a formal system to generate the set of grammatical strings and rule out ungrammatical strings.

- Such a formal system has computational properties.

- One such property is a simple decision problem: given a string, can it be generated by the formal system (*recognition*).

- If it is generated, what were the steps taken to recognize the string (*parsing*).
Why are parsing algorithms important?

- Consider the recognition problem: find algorithms for this problem for a particular formal system.

- The algorithm must be decidable.

- Preferably the algorithm should be polynomial: enables computational implementations of linguistic theories.

- Elegant, polynomial-time algorithms exist for formalisms like CFG
A recognition algorithm for CFGs

• Consider the CFG G:

 1. $S \rightarrow S \ S$

 2. $S \rightarrow a$

$L(G) = a^i$ for $i \geq 1$

• The recognition question: does the string aaa belong to $L(G)$?

 – Input: aaa

 – Output: \{yes, no\}
Parsing algorithm for CFGs

- If the answer is yes then parsing involves extraction of the parse tree (the *proof* of why the string was accepted)

- Similar to the extraction of the min edit distance alignment

- Just as in that case, we have to extract all possible parse trees (just as we could extract multiple alignments)
Top-down, depth-first, left to right parsing

\[S \rightarrow NP\ VP \]
\[NP \rightarrow Det\ N \]
\[NP \rightarrow Det\ N\ PP \]
\[VP \rightarrow V \]
\[VP \rightarrow V\ NP \]
\[VP \rightarrow V\ NP\ PP \]
\[PP \rightarrow P\ NP \]
\[NP \rightarrow I \]
\[Det \rightarrow a \mid the \]
\[V \rightarrow saw \]
\[N \rightarrow park \mid dog \mid man \mid telescope \]
\[P \rightarrow in \mid with \]
Top-down, depth-first, left to right parsing

- Consider the input string: *the dog saw a man in the park*

- S ... (S (NP VP)) ... (S (NP Det N) VP) ... (S (NP (Det the) N) VP) ... (S (NP (Det the) (N dog)) VP) ...

- (S (NP (Det the) (N dog)) VP) ... (S (NP (Det the) (N dog)) (VP V NP PP)) ... (S (NP (Det the) (N dog)) (VP (V saw) NP PP)) ...

- (S (NP (Det the) (N dog)) (VP (V saw) (NP Det N) PP)) ...

- (S (NP (Det the) (N dog)) (VP (V saw) (NP (Det a) (N man)) (PP (P in) (NP (Det the) (N park))))))
Number of derivations grows exponentially

e.g. $L(G) = a^+$ using CFG rules \{ $S \rightarrow S \ S$, $S \rightarrow a$ \}
Syntactic Ambiguity: (Church and Patil 1982)

• Algebraic character of parse derivations

• Power Series for grammar for coordination (more general than PPs):
 \[NP \rightarrow \text{cabbages} \mid \text{kings} \mid NP \text{ and } NP \]

 \[NP = \text{cabbages} + \text{cabbages and kings} \]
 \[+ 2 (\text{cabbages and cabbages and kings}) \]
 \[+ 5 (\text{cabbages and kings and cabbages and kings}) \]
 \[+ 14 \ldots \]
Syntactic Ambiguity: (Church and Patil 1982)

- Coefficients equal the number of parses for each NP string

- These ambiguity coefficients are Catalan numbers:

\[
Cat(n) = \binom{2n}{n} - \binom{2n}{n-1}
\]

- \(\binom{a}{b}\) is the binomial coefficient

\[
\binom{a}{b} = \frac{a!}{b!(a-b)!}
\]
Syntactic Ambiguity: (Church and Patil 1982)

- Why Catalan numbers? Cat(n) is the number of ways to parenthesize an expression of length n with two conditions:

 1. there must be equal numbers of open and close parens
 2. they must be properly nested so that an open precedes a close

- So the first term counts $2n$ parens with equal number of open and close, while the second term subtracts those that are not properly nested:

$$Cat(n) = \binom{2n}{n} - \binom{2n}{n-1}$$
Syntactic Ambiguity: (Church and Patil 1982)

- $Cat(n)$ also provides exactly the number of parses for the sentence:

 John saw the man
 on the hill
 with the telescope

 in the above sentence there are 2 PPs, so number of parse trees = $Cat(2 + 1) = 5$
 with 8 PPs: $Cat(9) = 4862$ parse trees
Other sub-grammars are simpler:

\[
ADJP \rightarrow adj ADJP \mid \epsilon
\]

\[
ADJP = 1 + adj + adj^2 + adj^3 + \ldots
\]

\[
ADJP = \frac{1}{1-adj}
\]
Syntactic Ambiguity: (Church and Patil 1982)

- Now consider power series of combinations of sub-grammars:
 \[S = \text{NP} \cdot \text{VP} \]

 (The number of products over sales ...)
 (is near the number of sales ...)

- Both the NP subgrammar and the VP subgrammar power series have Catalan coefficients
Syntactic Ambiguity: (Church and Patil 1982)

- The power series for the $S \rightarrow NP \ VP$ grammar is the multiplication:

\[
(N \sum_i Cat_i(P N)^i) \cdot (is \sum_j Cat_j(P N)^j)
\]

- In a parser for this grammar, this leads to a cross-product:

\[
L \times R = \{ (l, r) \mid l \in L \& r \in R \}
\]
Syntactic Ambiguity: (Church and Patil 1982)

- A simple change:

\[
\begin{align*}
\text{Is} & \ (\text{The number of products over sales ... }) \\
& \ (\text{near the number of sales ... }) \\
= & \ N \sum_{i} \text{Cat}_{i} (P N)^{i} \cdot (\sum_{j} \text{Cat}_{j} (P N)^{j}) \\
= & \ N \sum_{i} \sum_{j} \text{Cat}_{i} \text{Cat}_{j} (P N)^{i+j} \\
= & \ N \sum_{i+j} \text{Cat}_{i+j+1} (P N)^{i+j}
\end{align*}
\]
Syntactic Ambiguity and Parsing

- Clearly, a top-down parser will take exponential time (since there are exponentially many parses)

- How can we deal with this problem? *Dynamic programming*

- Store an item which corresponds to a multiple parses, which encapsulates all the ambiguity for a sub-parse

- Now we combine these items in subsequent steps
Chomsky Normal Form (CNF)

- Every CFG can be converted such that all rules are either of the form $A \rightarrow B C$ or $A \rightarrow a$, where A, B, C are non-terminals (not necessarily distinct) and a is a terminal symbol

 - ϵ removal: $A \rightarrow B C$, $C \rightarrow \epsilon$ | $C D$ | $a \ldots A \rightarrow B$ | $B C D$ | $B a$

 - eliminate chain rules: $A \rightarrow B C$ | $C D C$, $C \rightarrow D \ldots$

 $A \rightarrow B D$ | $D D D$

 - eliminate terminals from right hand sides with non-terminals:

 $A \rightarrow B a C d \ldots$

 $A \rightarrow B N_1 C N_2$, $N_1 \rightarrow a$, $N_2 \rightarrow d$

 - binarize right hand side: $A \rightarrow B C D E \ldots$
\[A \rightarrow B \; N_3, \; N_3 \rightarrow C \; N_4, \; N_4 \rightarrow D \; E \]
Dynamic Programming and Context-Free Parsing (Cocke-Younger-Kasami: CYK algorithm)
\{ S → S S , S → a \}

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{0,1} \rightarrow a)</td>
<td>(S_{1,2} \rightarrow a)</td>
<td>(S_{2,3} \rightarrow a)</td>
<td>(S_{3,4} \rightarrow a)</td>
<td></td>
</tr>
<tr>
<td>(S_{0,1} + S_{1,2}) = (S_{0,2} \rightarrow S S)</td>
<td>(S_{1,2} + S_{2,3}) = (S_{1,3} \rightarrow S S)</td>
<td>(S_{2,3} + S_{3,4}) = (S_{2,4} \rightarrow S S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{0,1} + S_{1,3}) OR (S_{0,2} + S_{2,3}) = (S_{0,3} \rightarrow S S)</td>
<td>(S_{1,2} + S_{2,4}) OR (S_{1,3} + S_{3,4}) = (S_{1,4} \rightarrow S S)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What goes in this cell?
?? = \(S_{0,4} \)
Shift-Reduce Parsing

- Every CFG has an equivalent pushdown automata: a finite state machine which has additional memory in the form of a stack

 - Consider the grammar: $NP \rightarrow Det\ N$, $Det \rightarrow the$, $N \rightarrow dog$

 - Consider the input: *the dog*

 - shift the first word *the* into the stack, check if the top n symbols in the stack matches the right hand side of a rule in which case you can **reduce** that rule, or optionally you can shift another word into the stack

 - reduce using the rule $Det \rightarrow the$, and push Det onto the stack
- shift *dog*, and then reduce using $N \rightarrow dog$ and push N onto the stack

- the stack now contains Det, N which matches the rhs of the rule $NP \rightarrow Det \; N$ which means we can reduce using this rule, pushing NP onto the stack

- If NP is the start symbol and since there is no more input left to shift, we can accept the string
Shift-Reduce Parsing

- Sometimes humans can be “led down the garden-path” when processing a sentence (from left to right)

- Such garden-path sentences lead to a situation where one is forced to backtrack because of a commitment to only one out of many possible derivations

- For example, in the sentence *The horse raced past the barn fell*, once you process the word *fell* you are forced to reanalyze the previous word *raced* as being a verb inside a relative clause: *raced past the barn*, meaning *the horse that was raced past the barn*
Notice however that other examples with the same structure but different words do not behave the same way. For example: *the flowers delivered to the patient arrived*
Earley Parsing

• A *dotted rule* is a way to get around the explicit conversion of a CFG to Chomsky Normal Form

• Since natural language grammars are quite large, and are often modified to be able to parse more data, avoiding the explicit conversion to CNF is an advantage

• A dotted rule denotes that the right hand side of a CF rule has been partially recognized/parsed
Earley Parsing

- $S \rightarrow \bullet NP \ VP$ indicates that once we find an NP and a VP we have recognized an S

- $S \rightarrow NP \bullet VP$ indicates that we’ve recognized an NP and we need a VP

- $S \rightarrow NP \ VP \bullet$ indicates that we have a complete S

- Consider the dotted rule $S \rightarrow \bullet NP \ VP$ and assume our CFG contains a rule $NP \rightarrow John$
 Because we have such an NP rule we can **predict** a new dotted rule $NP \rightarrow \bullet John$
Earley Parsing

- If we have the dotted rule: $NP \rightarrow • John$ and the next input symbol on our input tape is the word John we can scan the input and create a new dotted rule $NP \rightarrow John •$

- Consider the dotted rule $S \rightarrow • NP VP$ and $NP \rightarrow John •$
 Since NP has been completely recognized we can complete $S \rightarrow NP • VP$

- These three steps: predictor, scanner and completer form the Earley parsing algorithm and can be used to parse using any CFG without conversion to CNF
 Note that we have not accounted for ϵ in the scanner
Earley Parsing

- A state is a dotted rule plus a span over the input string, e.g.
 \((S \rightarrow NP \bullet VP, [4, 8])\) implies that we have recognized an \(NP\)

- We store all the states in a chart – typically, in chart\([i]\) we store all states of the form: \((A \rightarrow \alpha \bullet \beta, [i, j])\) or states of the form: \((A \rightarrow \alpha \bullet \beta, [j, i])\), where \(\alpha, \beta \in (N \cup T)^*\)

- Note that \((S \rightarrow NP \bullet VP, [0, 8])\) implies that in the chart there are two states \((NP \rightarrow \alpha \bullet, [0, 8])\) and \((S \rightarrow \bullet NP VP, [0, 0])\) — this is the completer rule, the heart of the Earley parser
Also if we have state $(S \rightarrow \bullet NP VP, [0, 0])$ in the chart, then we always predict the state $(NP \rightarrow \bullet \alpha, [0, 0])$ for all rules $NP \rightarrow \alpha$ in the grammar.
Earley Parsing

\[S \rightarrow NP \ VP \]
\[NP \rightarrow \ Det \ N \mid NP \ PP \mid John \]
\[Det \rightarrow \ the \]
\[N \rightarrow \ cookie \mid table \]
\[VP \rightarrow \ VP \ PP \mid V \ NP \mid V \]
\[V \rightarrow \ ate \]
\[PP \rightarrow \ P \ NP \]
\[P \rightarrow \ on \]

Consider the input: 0 John 1 ate 2 on 3 the 4 table 5
What can we predict from the state \((S \rightarrow \bullet \ NP \ VP, [0, 0]) \)?
What can we complete from the state \((V \rightarrow \ ate \bullet, [1, 2]) \)?