Lexical Semantics

- So far, we have listed words in our lexicon or vocabulary assuming a single meaning per word:

 Consider \(n \)-grams \(P(w_i \mid w_{i-2}, w_{i-1}) = P(\text{Bank} \mid \text{on, Commerce}) \) or prepositional phrase attachment if \(p=\text{on} \) and \(n2=\text{bank} \) then change \(N \) to \(V \)

- Consider . . . withdraw twenty dollars on the bank (correct = \(V \)) vs.
 . . . withdraw the troops on the bank (correct = \(N \))

- The same word bank means two different things but we cannot distinguish between them using the traditional definition of word.
Lexical Semantics

- To deal with this issue, we combine the *spelling or pronunciation* of a word and the *meaning*. In the *lexicon* we now store **lexemes** instead of words. A lexeme pairs a particular spelling or pronunciation with a particular meaning.

- The meaning part of a lexeme is called a **sense**. For CL, our interest is in relations between lexemes or disambiguating different senses of a word. word: bank \rightarrow lexeme: bank1 OR word: bank \rightarrow lexeme: bank2

- Note that meanings are often not definitions, but often are simple listings of compatible lexemes. cf. dictionary defns: *red, n.* the color of blood or ruby; *blood, n.* red liquid circulating in animals
Homonyms

• Homonyms: words that have the same form but different meanings

 1. Instead, the chemical plant was found in violation of several environmental laws

 2. Stanley formed an expedition to find a rare plant found along the Amazon river

• Same orthographic form: plant but two senses: plant\(^1\) and plant\(^2\)
Homonyms

- Text vs. speech: fly-casting for bass vs. rhythmic bass chords
 These cases are homonyms in text, but not in speech. Referred to as **homographs**

- Speech vs. text: would vs. wood
 These cases are not homonyms in text, but easily confused in speech. Referred to as **homophones**

- Note that this problem in some cases can be solved using *part of speech tagging*
 Can you think of a case which cannot be solved using POS tagging?
Applications

- Spelling correction: homophones: *weather* vs. *whether*

- Speech recognition: homophones: *to*, *two*, *too*. Also homonyms (see *n*-gram e.g.)

- Text to speech: homographs: *bass* vs. *bass*

- Information retrieval: homonyms: *latex*
Polysemy

- Consider the homonym: $bank \rightarrow$ commercial $bank^1$ vs. river $bank^2$

- Now consider

 1. A PCFG can be trained using derivation trees from a tree bank annotated by human experts

- Is this a new sense of $bank$?
Polysemy

• Senses can be derived from a particular lexeme. This process is known as polysemy. In previous case we would say that the use of bank is a sense derived from commercial bank₁

• In some cases, splitting into different lexemes has other supporting evidence: bank₁ has Italian origin vs. bank₂ has Scandinavian origin

 1. A PCFG can be trained using a bank of derivation trees called a tree-bank annotated by human experts

• How can we tell between homonyms and polysemous uses of a word?
Zeugma

- Consider the case for a verb like serve

 1. *Does United serve breakfast?*

 2. *Does United serve Philadelphia?*

 3. *Does United serve breakfast and dinner?*

 4. *#Does United serve breakfast and Philadelphia?*
Word Sense Disambiguation

• Consider a noun like *bank*

 1. *How many senses does it have?*

 2. *How are these senses related?*

 3. *How can they be reliably distinguished?*

• For NLP software, among these three questions, typically at runtime we need to automatically find the answer to the last question: given a word in context, map it to the correct lexeme: **word-sense disambiguation**
Word Sense Disambiguation: training data

training_VBG new_JJ Ukrainian_JJ plant(1)_NN operators_NNS to_TO replace_VB Russi
who_WP are_VBP leaving_VBG the_DT plant(1)_NN in_IN Ukraine_NNP and_CC improving
CC safety>NN procedures>NN at_IN the_DT Orange>NN County>NN P
Z closing_VBG three_CD missile>NN plant(1)_NN in_IN southern_JJ California
_IN the_DT hill>NN ,_, gardeners>NN $$_2$$ 200_CD million_CD printing>NN
of_IN incompletely_JJ oxidated_JJ whenever_WRB you_PRP eat_VBP a_DT plant(2)_NN
n_IN return>NN for_IN a_DT new_JJ T carmaker>NN could_MD finance_VB n_IN return>NN for_IN a_DT new_JJ

plant(1) plant(1) plant(1) plant(1) plant(1) plant(1) plant(2) plant(2) plant(2) plant(1) plant(1) plant(1)

_NN operators_NNS to_TO replace_VB s>NN in_IN Ukraine>NN and_CC improving
CC safety>NN procedures>NN at_IN the_DT Orange>NN County>NN P
Z closing_VBG three_CD missile>NN plant(1)_NN in_IN both_DT countries>NN

plant(1) plant(1) plant(1) plant(1) plant(1) plant(1) plant(1) plant(2) plant(2) plant(2)

s>NN in_IN both_DT countries>NN

_NN in_IN southern_JJ California

_IN the_DT hill>NN ,_, gardeners>NN $$_2$$ 200_CD million_CD printing>NN

of_IN incompletely_JJ oxidated_JJ whenever_WRB you_PRP eat_VBP a_DT plant(2)_NN

n_IN return>NN for_IN a_DT new_JJ T carmaker>NN could_MD finance_VB n_IN return>NN for_IN a_DT new_JJ

plant(1) plant(1) plant(1) plant(1) plant(1) plant(1) plant(1) plant(2) plant(2) plant(2) plant(1) plant(1) plant(1)

_NN near_IN Tuscaloosa>NN

_IN the_DT

_NN near_IN Tuscaloosa>NN
Word Sense Disambiguation: learning

- Many different learning methods: let’s consider one, Transformation Based Learning

- Let rule condition
 \[r \leftarrow W_{-1} = \text{gardeners}, W_{+1} = \text{begonias}, W_{+\text{window}} = \text{floral} \]

- If \(r \) then change from \textbf{plant}^1 \space (manufacturing plant) to \textbf{plant}^2 \space (living plant)
Synonyms

• Synonyms: Different lexemes with the same meaning

 1. *How big/large is that plane?*

 2. *Would I be flying on a big/large or small plane?*

• Synonyms clash with polysemous meanings

 1. *Seema is my big sister*

 2. *#Seema is my large sister*
WordNet

- WordNet is an electronic database of word relationships, handcrafted from scratch by researchers at Princeton University (George Miller, Christine Fellbaum, et al.)

- WordNet contains 3 databases: for verbs, nouns and one for adjectives and adverbs

<table>
<thead>
<tr>
<th>Category</th>
<th>Unique Forms</th>
<th>Number of Senses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>94474</td>
<td>116317</td>
</tr>
<tr>
<td>Verb</td>
<td>10319</td>
<td>22066</td>
</tr>
<tr>
<td>Adjective</td>
<td>20170</td>
<td>29881</td>
</tr>
<tr>
<td>Adverb</td>
<td>4546</td>
<td>5677</td>
</tr>
</tbody>
</table>
WordNet

- Ask the question: how many senses per noun or verb? The distribution of senses follows Zipf’s (2nd) Law.

- WordNet provides multiple lexeme entries for each word and for each part of speech, e.g. *plant* as noun has 3 senses; *plant* as verb has 2 senses

- WordNet also provides domain-independent lexical relations such as IS-A, HasMember, MemberOf, …
WordNet: noun relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernym</td>
<td>this is a kind of</td>
<td>breakfast → meal</td>
</tr>
<tr>
<td>Hyponym</td>
<td>this has a specific instance</td>
<td>meal → lunch</td>
</tr>
<tr>
<td>Has-Member</td>
<td>this has a member</td>
<td>faculty → professor</td>
</tr>
<tr>
<td>Member-Of</td>
<td>this is member of a group</td>
<td>copilot → crew</td>
</tr>
<tr>
<td>Has-Part</td>
<td>this has a part</td>
<td>table → leg</td>
</tr>
<tr>
<td>Part-Of</td>
<td>this is part of</td>
<td>course → meal</td>
</tr>
<tr>
<td>Antonym</td>
<td>this is an opposite of</td>
<td>leader → follower</td>
</tr>
</tbody>
</table>
WordNet: verb relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponym</td>
<td>this event is a kind of</td>
<td>fly → travel</td>
</tr>
<tr>
<td>Tropynym</td>
<td>this event has a subtype</td>
<td>walk → stroll</td>
</tr>
<tr>
<td>Entails</td>
<td>this event entails</td>
<td>snore → sleep</td>
</tr>
<tr>
<td>Antonym</td>
<td>this event is opposite of</td>
<td>increase → decrease</td>
</tr>
</tbody>
</table>
WordNet: example from ver1.7.1

Sense1: Canada
 ⇒ North American country, North American nation
 ⇒ country, state, land
 ⇒ administrative district, administrative division, territorial division
 ⇒ district, territory
 ⇒ region
 ⇒ location
 ⇒ entity, physical thing
WordNet: example from ver1.7.1

Sense 3: Vancouver
⇒ city, metropolis, urban center
⇒ municipality
⇒ urban area
⇒ geographical area
⇒ region
⇒ location
⇒ entity, physical thing
⇒ administrative district, territorial division
⇒ district, territory
⇒ region
⇒ location
⇒ entity, physical thing
⇒ port
⇒ geographic point
⇒ point
⇒ location
⇒ entity, physical thing
WordNet

- A synset in WordNet is a list of synonyms (interchangeable words)

- \{ chump, fish, fool, gull, mark, patsy, fall guy, sucker, schlemiel, shlemiel, soft touch, mug \}

- How can we use this information like synsets, hypernyms, etc. from WordNet to benefit NLP applications?

- Consider one example: PP attachment, words plus word classes extracted from the hypernym hierarchy increase accuracy from 84% to 88% (Stetina and Nagao, 1998)
Another example of WordNet used in NLP applications: selectional restrictions

We have considered subcategorization:

VP-$with$-NP-$complement $\rightarrow V(eat)\ NP$ “eat six bowls of rice”

But not selectional restrictions of the verb itself: “eat tomorrow”

Consider what do you want to eat tomorrow

We can use the synset \{ food, nutrient \} to describe the NP argument of eat – then the 60K lexemes under these nodes in the WordNet hierarchy will be acceptable.

(However, what about “eat my shorts”)

\rightarrow several other applications have been explored