Finite-state transducers

• a : 0 is a notation for a mapping between two alphabets $a \in \Sigma_1$ and $0 \in \Sigma_2$
• Finite-state transducers (FSTs) accept pairs of strings
• Finite-state automata equate to regular languages and FSTs equate to regular relations
• e.g. $L = \{ (x^n, y^n) : n > 0, x \in \Sigma_1$ and $y \in \Sigma_2 \}$ is a regular relation accepted by some FST. It maps a string of x’s into an equal length string of y’s
Finite-state transducers

\[R(T_1) = R(T_2) = \{ (aa, 10), (ab, 1) \} \]
Finite-state transducers

Regular relations

• A generalization of regular languages
• The set of regular relations is:
 – The empty set and \((x, y)\) for all \(x, y \in \Sigma_1 \times \Sigma_2\) is a regular relation
 – If \(R_1, R_2\) and \(R\) are regular relations then:
 \[
 R_1 \cdot R_2 = \{(x_1x_2, y_1y_2) \mid (x_1, y_1) \in R_1, (x_2, y_2) \in R_2\}
 \]
 \[
 R_1 \cup R_2
 \]
 \[
 R^* = \bigcup_{i=0}^{\infty} R_i
 \]
 – There are no other regular relations
Finite-state transducers

• Formal definition:
 – Q: finite set of states, $q_0, q_1, ..., q_n$
 – Σ: alphabet composed of input/output pairs $i:o$
 where $i \in \Sigma_1$ and $o \in \Sigma_2$ and so $\Sigma \subseteq \Sigma_1 \times \Sigma_2$
 – q_0: start state
 – F: set of final states
 – $\delta(q, i:o)$ is the transition function which returns a set of states

Finite-state transducers: Examples

• (a^n, b^n): map n a’s into n b’s
• rot13 encryption (the Caesar cipher): assuming 26 letters each letter is mapped to the letter 13 steps ahead (mod 26), e.g. $cipher \rightarrow pv{}cure$
• reversal of a fixed set of words
• reversal of all strings up to fixed length k
• input: binary number n, and output: binary number $n+1$
• upcase or lowercase a string of any length
• *Pig latin: $pig{} latin{} is{} goofy \rightarrow igpay{} atinlay{} is{} oofygay$
• *convert numbers into pronunciations, e.g. 230.34 two hundred and thirty point three four
Finite-state transducers

• Following relations are cannot be expressed as a FST
 – \((a^n b^n, c^n)\): because \(a^n b^n\) is not regular
 – reversal of strings of any length
 – \(a^i b^j \rightarrow b^j a^i\) for any \(i, j\)

• Unlike regular languages, regular relations are not closed under intersection
 – \((a^n b^*, c^n) \cap (a^* b^n, c^n)\) produces \((a^n b^n, c^n)\)
 – However, regular relations with input and output of equal lengths are closed under intersection

Regular Relations Closure Properties

• Regular relations (rr) are **closed** under some operations
• For example, if \(R_1, R_2\) are regular relns:
 – union \((R_1 \cup R_2\) results in \(R_3\) which is a rr)
 – concatenation
 – iteration \((R_1 + = one or more repeats of R_1)\)
 – Kleene closure \((R_1^* = zero or more repeats of R_1)\)
• However, unlike regular languages, regular relns are not closed under:
 – intersection (possible for equal length regular relns)
 – complement
Regular Relations Closure Properties

- New operations for regular relations:
 - composition
 - project input (or output) language to regular language; for FST t, input language = $\pi_1(t)$, output = $\pi_2(t)$
 - take a regular language and create the identity regular relation; for FSM f, let FST for identity relation be $\text{Id}(f)$
 - take two regular languages and create the cross product relation; for FSMs f & g, FST for cross product is $f \times g$
 - take two regular languages, and mark each time the first language matches any string in the second language

Regular Relation/FST
Kleene Closure

[Diagram of a finite state transducer (FST) with states labeled 0, 1, 2, 3, 4, and transitions labeled with symbols such as 'a', 'b', '<\text{eps}>', and 'c'. The diagram illustrates the Kleene closure of a regular relation.]
FST Algorithms

- **Compose**: Given two FSTs \(f \) and \(g \) defining regular relations \(R_1 \) and \(R_2 \) create the FST \(f \circ g \) that computes the composition: \(R_1 \circ R_2 \)
- **Union**: Given two FSTs \(f \) and \(g \) create an FST that computes the union \(f + g \)
- **Recognition**: Is a given pair of strings accepted by FST \(r \)?
- **Transduce**: given an input string, provide the output string(s)

Composing FSTs

\(T_1 \):
- \(a : a \) to \(1 \)
- \(a : b \) to \(1 \)
- \(b : a \) to \(3 \)
- \(b : b \) to \(2 \)

\(T_2 \):
- \(b : a \) to \(1 \)
- \(a : d \) to \(2 \)
- \(b : a \) to \(2 \)

\(a^n ab := a^n ba \)
\(a^n bb := a^n bb \)

\(a : a \) to \(1 \)
\(b : a \) to \(1 \)

\(b a^n b := a d^n a \)
\(b a^n a := a d^n c \)

What is \(T_1 \) composed with \(T_2 \), aka \(T_1 \circ T_2 \)?
Composing FSTs

\(T_1 \circ T_2: \)

```
0 1 a : b
 0 2 b : b
 2 3 b : b
```

```
0 1 b : a
 1 2 b : a
```

```
0 1 a : b
 0 2 b : b
 2 3 b : b
```

```
(0,0) (1,1) a : a
(0,1) (1,2) a : a
(2,0) (3,1) b : a
```

\(ab := ac \)
\(bb := aa \)

Composing FSTs

```
0 1 a : b
 0 2 b : b
 2 3 b : b
```

```
0 1 b : a
 1 2 b : a
```

```
0 1 a : b
 0 2 b : b
 2 3 b : b
```

```
(0,0) (1,1) a : a
(0,1) (2,1) b : a
(0,1) (2,2) b : a
(2,0) (3,1) b : a
```

```
0 0 a : a
 1 1 a : d
 1 2 a : c
```

```
(0,1) (0,1) a : d
(0,1) (0,2) a : c
(1,1) (3,1) b : d
(0,1) (3,2) b : c
```

1/9/08
Composing FSTs

\[
\begin{array}{c}
\text{start with pair of final states}^{17}
\end{array}
\]
Composing FSTs

\begin{align*}
(0,0) & (1,1) \ a : a \\
(0,1) & (1,2) \ a : a \\
(2,0) & (3,1) \ b : a
\end{align*}

\begin{align*}
(0,0) & (2,1) \ b : a \\
(0,1) & (2,2) \ b : a \\
(2,1) & (3,2) \ b : a
\end{align*}

\begin{align*}
(0,1) & (0,1) \ a : d \\
(0,1) & (0,2) \ a : c \\
(1,1) & (3,2) \ b : c
\end{align*}

\begin{align*}
(0,0) & (1,1) \ a : b \\
(0,1) & (1,2) \ b : b \\
(0,1) & (1,2) \ b : a \\
(0,2) & (2,2) \ b : b
\end{align*}

\begin{align*}
(0,0) & (1,1) \ b : a \\
(0,1) & (1,2) \ b : a \\
(0,1) & (1,2) \ b : a \\
(0,2) & (2,2) \ b : b
\end{align*}

\begin{align*}
(1,1) & (3,1) \ b : d \\
(0,1) & (0,2) \ a : c \\
(1,1) & (3,2) \ b : c
\end{align*}

Composing FSTs

\[T_1 \circ T_2: \]

\begin{align*}
(0,0) & (1,1) \ a : a \\
(0,0) & (2,1) \ b : a \\
(0,0) & (3,2) \ b : a
\end{align*}

\begin{align*}
(1,1) & (3,1) \ b : c \\
(2,1) & (3,2) \ b : c
\end{align*}

\[\begin{align*}
ab & := ac \\
bb & := aa
\end{align*} \]
FST Composition

- Input: transducer S and T
- Transducer composition results in a new transducer with states and transitions defined by matching compatible input-output pairs:
 \[\text{match}(s,t) = \{ (s,t) \rightarrow^{x,y} (s',t') : s \rightarrow^{x} s' \in S.\text{edges} \text{ and } t \rightarrow^{y} t' \in T.\text{edges} \} \cup \{ (s,t) \rightarrow^{x,y} (s',t) : s \rightarrow^{x} s' \in S.\text{edges} \} \cup \{ (s,t) \rightarrow^{x} (s,t') : t \rightarrow^{y} t' \in T.\text{edges} \} \]
- Correctness: any path in composed transducer mapping \(u \) to \(w \) arises from a path mapping \(u \) to \(v \) in S and path mapping \(v \) to \(w \) in T, for some \(v \)

Cross-product FST

- For regular languages \(L_1 \) and \(L_2 \), we have two FSAs, \(M_1 \) and \(M_2 \)
 \[M_1 = (\Sigma, Q_1, q_1, F_1, \delta_1) \]
 \[M_2 = (\Sigma, Q_2, q_2, F_2, \delta_2) \]
- Then a transducer accepting \(L_1 \times L_2 \) is defined as:
 \[T = (\Sigma, Q_1 \times Q_2, \langle q_1, q_2 \rangle, F_1 \times F_2, \delta) \]
 \[\delta(s_1, s_2, a, b) = \delta_1(s_1, a) \times \delta_2(s_2, b) \]
 for any \(s_1 \in Q_1, s_2 \in Q_2 \) and \(a, b \in \Sigma \cup \{ \varepsilon \} \)
Subsequential FSTs

- Consider an FST in which for every symbol scanned from the input we can deterministically choose a path and produce an output.
- Such an FST is analogous to a deterministic FSM. It is called a **subsequential** FST.
- Subsequential transducers with \(p \) outputs on the final state is called a \(p \)-**subsequential** FST.
- A subsequential FST with all states as final states is called a **sequential** FST.

Summary

- Finite state transducers specify regular relations
 - Encoding problems as finite-state transducers
- Extension of regular expressions to the case of regular relations/FSTs
- FST closure properties: union, concatenation, composition
- FST special operations:
 - creating regular relations from regular languages (Id, cross-product);
 - creating regular languages from regular relations (projection)
- FST algorithms
 - Recognition, Transduction
 - Determinization, Minimization? (not all FSTs can be determinized)