Sequence Learning

• British Left Waffles on Falkland Islands
 – (N, N, V, P, N, N)
 – (N, V, N, P, N, N)

• Segmentation
 – (b, i, b, i, b, b, i, b, i, b, i, b, i, b, i, b, i, b, i)

 中国十四个边境开放城市经济建设成就显著
 – (b, i, b, i, b, b, i, b, i, b, i, b, i, b, i, b, i, b, i)

 China’s 14 open border cities marked economic achievements
Sequence Learning

3 states: N, V, P
Observation sequence: \((o_1, \ldots, o_6)\)
State sequence (6+1): (Start, N, N, V, P, N, N)

Finite State Machines

Mealy Machine
Finite State Machines

Probabilistic FSMs

- Each transition is associated with a \textit{transition probability}
- Each emission is associated with an \textit{emission probability}
- Two conditions:
 - All outgoing transition arcs from a state must sum to 1
 - All emission arcs from a state must sum to 1
Probabilistic FSMs

\[
\sum P(q \rightarrow x) = P(q \rightarrow r) + P(q \rightarrow q) = 1.0
\]

\[
\sum_{x} P(\text{emit}(q,x)) = P(\text{emit}(q,a)) + P(\text{emit}(q,b)) = 1.0
\]
Hidden Markov Models

- There are \(n \) states \(s_1, \ldots, s_i, \ldots, s_n \)
- The emissions are observed (input data)
- Observation sequence \(O=(o_1, \ldots, o_T) \)
- The states are not directly observed (hidden)
- Data does not directly tell us which state \(X_t \) is linked with observation \(o_t \)

\[X_t \in \{s_1, \ldots, s_n\} \]

Properties of HMMs

- Markov assumption

\[P(X_t = s_i \mid \ldots, X_{t-1} = s_j) \]

- Stationary distribution

\[P(X_t = s_i \mid X_{t-1} = s_j) = P(X_{t+l} = s_i \mid X_{t+l-1} = s_j) \]
HMM Algorithms

• HMM as language model: compute probability of given observation sequence

• HMM as parser: compute the best sequence of states for a given observation sequence

• HMM as learner: given a set of observation sequences, learn its distribution, i.e. learn the transition and emission probabilities

\[P(o_1, \ldots, o_T) = \sum_{X_1,\ldots,X_{T+1}} P(X_1,\ldots,X_{T+1}, o_1,\ldots,o_T) \]
HMM Algorithms

- HMM as parser: compute the best sequence of states for a given observation sequence
- Compute best path \(X_1, \ldots, X_{T+1} \) from the probability \(P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T) \)

Best state sequence \(X^*, \ldots, X_{T+1}^* \)

\[
= \arg \max_{X_1, \ldots, X_{T+1}} P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T)
\]

Best Path (Viterbi) Algorithm

- Key Idea 1: storing just the best path doesn’t work
- Key Idea 2: store the best path upto each state
Viterbi Algorithm

function viterbi (edges, input, obs): returns best path
edges = transition probability
input = emission probability
T = length of obs, the observation sequence
num-states = number of states in the HMM
Create a path-matrix: viterbi[num-states+1, T+1] # init to all 0s
for each state s: viterbi[s, 0] = \pi[s]
for each time step t from 0 to T:
 for each state s from 0 to num-states:
 for each s’ where edges[s,s’] is a transition probability:
 new-score = viterbi[s,t] * edges[s,s’] * input[s’,obs[t]]
 if (viterbi[s’,t+1] == 0) or (new-score > viterbi[s’, t+1]):
 viterbi[s’, t+1] = new-score
 back-pointer[s’,t+1] = s
finding the best path
best-final-score = best-final-state = 0
for each state s from 0 to num-states:
 if (viterbi[s,T+1] > best-final-score):
 best-final-state = s
 best-final-score = viterbi[s,T+1]
start with the last state in the sequence
x = best-final-state
state-sequence.push(x)
for t from T+1 downto 0:
 state-sequence.push(back-pointer[x,t])
 x = back-pointer[x,t]
return state-sequence
Forward-Backward Algorithm

• Algorithm that finds the transition and emission probabilities using training data that does not have hidden states provided
• Set the probabilities (for all parameters in the HMM) so that the training data T is assigned highest $P(T)$ value (or lowest $H(T)$, entropy value)
• This is called the maximum likelihood value over all possible hidden state sequences for the training data
• Exploits the fact that some transitions and resulting observations will occur more frequently than others in the training data

Forward-backward Algorithm

• Consider input $o_1,..., o_p,..., o_T$ where each o_t is from a set of symbols $V = \{1,...,k,...,K\}$
• Let π_i be the probability of state i being a start state (for simplicity, π_i is not discussed further)
• Let $a_{i,j}$ be the transition probability:
 $$P(X_{t+1} = s_j \mid X_t = s_i)$$ $|S|^2$ distinct $a_{i,j}$ values
• Let $b_{j,k}$ be the emission probability:
 $$P(o_t = k \mid X_{t+1} = s_j)$$ $|S|\times|V|$ distinct $b_{j,k}$ values
• Probability of going from state s_i to state s_j while observing input o_t is simply $a_{i,j} \times b_{j,k}$
Forward-backward Algorithm

- The algorithm starts with an initial setting for the probabilities in a and b
- We are provided with training data which consists of observation sequence(s): $o_1, \ldots, o_t, \ldots, o_T$
- The probability $P(o_1, \ldots, o_T)$ depends on the values in a and b
- For given observation sequence(s), different transitions/emissions will be visited with different frequencies

Forward-backward Algorithm

- For every path through the HMM, we count how many transitions occurred from state i to state j on observation o_t
- Then (loosely speaking) we reward those transitions (and emissions) which have high expected frequency and penalize the competing transitions
- Expected frequency means we multiply the frequency with the current probability (taken from a and b)
Forward-backward Algorithm

• \(P(o_1, \ldots, o_T) \) is the expected frequency of visiting all transitions and so the new frequency is the expected occurrence of a transition divided by \(P(o_1, \ldots, o_T) \)
• This gives us new values for all probabilities: \(a' \) and \(b' \) and we set \(a \) and \(b \) to these new values
• Compute \(P(o_1, \ldots, o_T) \). If the value is unchanged from before iteration then stop (convergence)
• Otherwise iterate (the entire procedure) with new values for \(a \) and \(b \)

Forward-backward Algorithm

• How to compute expected frequency over all paths efficiently (reuse dynamic programming idea from Viterbi algorithm)
• For input \(o_1, \ldots, o_t, \ldots, o_T \) where \(o_t \in V = \{1,\ldots,k,\ldots,K\} \)
• For every path from a start state to state \(i \) we can compute the probability of observing \(o_1, \ldots, o_{t-1} \)
• Let \(\alpha_i(t) \) be the sum of all these probabilities
• For every path from state \(j \) to a final state we can compute the probability of observing \(o_{t+1}, \ldots, o_T \)
• Let \(\beta_j(t+1) \) be the sum of all these probabilities
\[\alpha_k(t - 1) \quad k \quad \alpha_i(t) \cdot a_{i,j} \cdot b_{j,o_t} \cdot \beta_j(t + 1) \quad \beta_m(t + 2) \]

\[\alpha_i(t) = \sum_{k=1}^{N} a_{k,i} \cdot b_{i,o_t-1} \cdot \alpha_k(t - 1) \]

\[\beta_j(t + 1) = \sum_{m=1}^{N} a_{j,m} \cdot b_{m,o_{t+1}} \cdot \beta_m(t + 2) \]

\[P(o_1, \ldots, o_T) = \sum_{i=1}^{N} \alpha_i(T + 1) = \sum_{i=1}^{N} \pi_i \cdot \beta_i(1) \]

\[\hat{f}(i, j, o_t) = \frac{\alpha_i(t) \cdot a_{i,j} \cdot b_{j,o_t} \cdot \beta_j(t + 1)}{P(o_1, \ldots, o_T)} \]

\[\hat{f}(i, j) = \sum_{t=1}^{T} \hat{f}(i, j, o_t) \]

\[a'_{i,j} = \frac{\hat{f}(i, j)}{\sum_{j=1}^{N} \hat{f}(i, j)} \]

\[b'_{j,k} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{f}(i, j, o_t = k)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \hat{f}(i, j)} \]
Forward-Backward Algorithm

- Each iteration provides new values for all the \textit{parameters}.
- But are the new parameters any better? How can we tell?
- Compute probability of the training data.
- For HMMs, Baum 1977 shows that the probability will always be non-decreasing (later generalized to the more general EM algorithm).
- Same as cross-entropy is non-increasing:

\[KL(\mu_{i+1} \parallel D) \leq KL(\mu_i \parallel D)\]