Finite-state transducers

- a:0 is a notation for a mapping between two alphabets a ∈ Σ₁ and 0 ∈ Σ₂
- Finite-state transducers (FSTs) accept pairs of strings
- Finite-state automata equate to regular languages and FSTs equate to regular relations
- e.g. L = { (xⁿ, yⁿ) | n > 0, x ∈ Σ₁ and y ∈ Σ₂} is a regular relation accepted by some FST. It maps a string of x’s into an equal length string of y’s
Regular relations

- A generalization of regular languages
- The set of regular relations is:
 - The empty set and \((x, y)\) for all \(x, y\) is a regular relation
 - If \(R_1, R_2\) and \(R\) are regular relations then:
 - \(R_1 \cdot R_2 = \{(x_1, x_2, y_1, y_2) \mid (x_1, y_1) \in R_1, (x_2, y_2) \in R_2\}\)
 - \(R_1 \cup R_2\)
 - \(R^* = \cup_{i=0}^\infty R_i\)
 - There are no other regular relations

Finite-state transducers

- Formal definition:
 - \(Q\): finite set of states, \(q_0, q_1, \ldots, q_n\)
 - \(\Sigma\): alphabet composed of input/output pairs \(i:o\)
 where \(i \in \Sigma_1\) and \(o \in \Sigma_2\) and so \(\Sigma \subseteq \Sigma_1 \times \Sigma_2\)
 - \(q_0\): start state
 - \(F\): set of final states
 - \(\delta(q, i:o)\) is the transition function which returns a set of states

Finite-state transducers: Examples

- \((a^n, b^n)\): map \(n\) \(a\)'s into \(n\) \(b\)'s
- rot13 encryption (the Caesar cipher): assuming 26 letters each letter is mapped to the letter 13 steps ahead (mod 26), e.g. \(cipher \rightarrow pvcur\)
- reversal of a fixed set of words
- reversal of all strings upto fixed length \(k\)
- input: binary number \(n\), and output: binary number \(n+1\)
- upcase or lowercase a string of any length
- *Pig latin: \(pig\) \(latin\) \(is\) \(goofy\) \(\rightarrow igpay\) \(atinlay\) \(is\) \(oofy\)\(gay\)
- *convert numbers into pronunciations,
 e.g. 230.34 two hundred and thirty point three four
Regular Relations Closure Properties

- New operations for regular relations:
 - *composition*
 - *project* input (or output) language to regular language;
 for FST t, input language = $\pi_i(t)$, output = $\pi_o(t)$
 - take a regular language and create the *identity* regular relation;
 for FSM f, let FST for identity relation be $\text{Id}(f)$
 - take two regular languages and create the *cross product*
 relation; for FSMs f & g, FST for cross product is $f \times g$
 - take two regular languages, and *mark each time the first language
 matches any string in the second language*

Regular Relation/FST Kleene Closure

- Regular relations (rr) are *closed* under some operations
- For example, if R_1, R_2 are regular relns:
 - union ($R_1 \cup R_2$ results in R_3 which is a rr)
 - concatenation
 - iteration ($R_1^+ = \text{one or more repeats of } R_1$)
 - Kleene closure ($R_1^* = \text{zero or more repeats of } R_1$)
- However, unlike regular languages, regular relns are not closed under:
 - intersection (possible for equal length regular relns)
 - complement

Finite-state transducers

- Following relations are cannot be expressed as a FST
 - $(a^n b^n, c^n)$: because $a^n b^n$ is not regular
 - reversal of strings of any length
 - $a^i b^j \rightarrow b^j a^i$ for any i, j
- Unlike regular languages, regular relations are not closed under intersection
 - $(a^n b^n, c^n) \cap (a^n b^n, c^n)$ produces $(a^n b^n, c^n)$
 - However, regular relations with input and output of equal lengths *are* closed under intersection
Regular Expressions for FSTs

(a:c) (b:d)*

(a:c (b:d)*) ∪ ((e:g)* f:h)

((a:0 ∪ a:1) (b:0 ∪ b:1))*
The basic idea is similar to the closure of regular languages under union or intersection.

But, instead of cross-product of *states*, we consider cross-product of *edges*: compose those edges where output/input matches.
Composing FSTs

\[
\begin{align*}
(0,0) &\rightarrow (1,1) \text{ a:a} \\
(0,1) &\rightarrow (2,1) \text{ b:a} \\
(0,1) &\rightarrow (1,2) \text{ a:a} \\
(1,1) &\rightarrow (3,1) \text{ b:d} \\
(0,1) &\rightarrow (0,2) \text{ a:c} \\
(1,1) &\rightarrow (3,2) \text{ b:c} \\
(2,0) &\rightarrow (3,1) \text{ b:a} \\
(2,1) &\rightarrow (2,2) \text{ b:a} \\
(2,1) &\rightarrow (3,2) \text{ b:a} \\
\end{align*}
\]

Composing FSTs

\[
\begin{align*}
(0,0) &\rightarrow (1,1) \text{ a:a} \\
(0,1) &\rightarrow (2,1) \text{ b:a} \\
(0,1) &\rightarrow (1,2) \text{ a:a} \\
(1,1) &\rightarrow (3,1) \text{ b:d} \\
(0,1) &\rightarrow (0,2) \text{ a:c} \\
(1,1) &\rightarrow (3,2) \text{ b:c} \\
(2,0) &\rightarrow (3,1) \text{ b:a} \\
(2,1) &\rightarrow (2,2) \text{ b:a} \\
(2,1) &\rightarrow (3,2) \text{ b:a} \\
\end{align*}
\]
FST Composition

- Input: transducer S and T
- Transducer composition results in a new transducer with states and transitions defined by matching compatible input-output pairs.
- \(\text{match}(s, t) \) : defines the edges for the new composed FST, \(s \) is a state in S, \(t \) is a state in T

Cross-product FST

- For regular languages \(L_1 \) and \(L_2 \), we have two FSAs, \(M_1 \) and \(M_2 \)

 \[
 M_1 = (\Sigma_1, Q_1, q_1, F_1, \delta_1) \\
 M_2 = (\Sigma_2, Q_2, q_2, F_2, \delta_2)
 \]
- Then a transducer accepting \(L_1 \times L_2 \) is defined as:

 \[
 T' = (\Sigma_1, \Sigma_2, Q_1 \times Q_2, \langle q_1, q_2 \rangle, F_1 \times F_2, \delta) \\
 \delta(s_1, s_2, a, b) = \delta_1(s_1, a) \times \delta_2(s_2, b) \\
 \text{for any } s_1 \in Q_1, s_2 \in Q_2 \text{ and } a, b \in \Sigma \cup \{\varepsilon\}
 \]

FST Composition

- \(\text{match}(s, t) = \)

 \[
 \begin{align*}
 \{ (s, t) \rightarrow^{x:y} (s', t') \mid s \rightarrow^{x:y} s' \in S.\text{edges} \text{ and} \\
 t \rightarrow^{y:z} t' \in T.\text{edges} \} \cup \\
 \{ (s, t) \rightarrow^{x:e} (s', t) \mid s \rightarrow^{x:e} s' \in S.\text{edges} \} \cup \\
 \{ (s, t) \rightarrow^{e:z} (s, t') \mid t \rightarrow^{e:z} t' \in T.\text{edges} \}
 \end{align*}
 \]
- **Correctness**: any path in composed transducer mapping \(u \) to \(w \) arises from a path mapping \(u \) to \(v \) in S and path mapping \(v \) to \(w \) in T, for some \(v \)

Summary

- Finite state transducers specify regular relations
 - Encoding computation as finite-state transducers
- Extension of regular expressions to the case of regular relations/FSTs
- FST closure properties: union, concatenation, composition
- FST special operations:
 - creating regular relations from regular languages (Id, cross-product);
 - creating regular languages from regular relations (projection)