Co-Training methods for Statistical Parsing using Lexicalized Grammars

Anoop Sarkar
Dept. of Computer and Information Sciences
University of Pennsylvania
anoop@linc.cis.upenn.edu
Open Issues in Lexicalized, Corpus-based Language Processing

- Adapting to new domains: training on one domain, testing (using) on another.

- Higher performance when using limited amounts of annotated data.

- Separating structural (robust) aspects of the problem from lexical (sparse) ones.
Statistical Parsing: Supervised vs. Unsupervised Methods

- “Stone soup” approaches to unsupervised learning of parsers cannot handle structurally rich parses found in the Penn Treebank. (Lafferty et al 1992; Della Pietra et al 1994; de Marcken 1995)

- A feasible technique: Combining Labeled and Unlabeled Data
 - Active Learning: Bet on which examples are the hardest. (and annotate them)
 - Co-Training: Bet on which examples can be handled with high confidence. (use as labeled data)
Case Study in Unsupervised Methods: POS Tagging

- POS Tagging: finding categories for words

- ... the stocks \textit{rose}/V ... vs. ... a \textit{rose}/N bouquet ...

- Tag dictionary: \textit{rose}: N, V
 and nothing else
Case Study: Unsupervised POS Tagging

- (Cutting et al. 1992) The Xerox Tagger: used HMMs with hand-built tag dictionaries. High performance: 96% on Brown

- (Merialdo 1994; Elworthy 1994) used varying amounts of labeled data as seed information for training HMMs. Conclusion: HMMs do not effectively combine labeled and unlabeled data

- (Brill 1997) aggressively used tag dictionaries taken from labeled data to train an unsupervised POS tagger. Performance: 95% on WSJ. Approach does not easily extend to parsing: no notion of tag dictionary.
Co-Training (Blum and Mitchell 1998; Yarowsky 1995)

- Pick two (or more) “views” of a classification problem.

- Build separate models for each of these “views” and train each model on a small set of labeled data.

- Sample an unlabeled data set and to find examples that the models agree upon the most. Exploit the mutual constraints between the models

- Agreement can be computed as a simple product or in a more complex fashion. (Collins and Singer 1999; Goldman and Zhou 2000)

- Bet that these examples are good as training examples and iterate.
Pierre Vinken will join the board as a non-executive director
Recursion in Parse Trees

- Usual decomposition of parse trees:

 \[S(\text{join}) \rightarrow \text{NP}(\text{Vinken}) \text{ VP}(\text{join}) \]
 \[\text{NP}(\text{Vinken}) \rightarrow \text{Pierre Vinken} \]
 \[\text{VP}(\text{join}) \rightarrow \text{will VP}(\text{join}) \]
 \[\text{VP}(\text{join}) \rightarrow \text{join NP}(\text{board}) \text{ PP}(\text{as}) \]

 \[\ldots \]
Parsing as Tree Classification and Attachment

Model H1: \(P(T_i \mid T_{i-2}T_{i-1}) \times P(w_i \mid T_i) \)
Parsing as Tree Classification and Attachment

Model H2: \(P(\text{TOP} = w, T) \times \prod_i P(w_i, T_i \mid \eta, w, T) \)
The Co-Training Algorithm

1. Input: *labeled* and *unlabeled*

2. Update cache
 - If *unlabeled* is empty; exit
 - Randomly select sentences from *unlabeled* and refill cache

3. Train models H1 and H2 using *labeled*

4. Apply H1 and H2 to cache: compute $P(T_0, \ldots, T_N)$

5. Multiply values for $P(T_0, \ldots, T_N)$ from H1 and H2 and renormalize

6. Pick most probable n from renormalized score

7. Remove best n from cache and add to *labeled*

8. $n = 2n$; Go to Step 2
Preliminary Experiment

- *labeled* was set to Sections 02-06 of the Penn Treebank WSJ (9625 sentences)

- *unlabeled* was 30137 sentences (Section 07-21 of the Treebank stripped of all annotations).

- A TAG dictionary of all lexicalized trees from *labeled* and *unlabeled*. Novel trees were treated as unknown tree tokens

- The *cache* size was 3000 sentences.
Preliminary Experiment

- Test set: Section 0 (*development test set*)

- Baseline Model was trained only on the *labeled* set:
 Labeled Bracketing Precision = 67.43% Recall = 64.93%

- After 12 iterations of Co-Training:
 Labeled Bracketing Precision = 81.2% Recall = 78.94%

- NEW!: Evaluation of an unsupervised approach is directly comparable to other supervised parsers.
Summary

- Methods that combine labeled and unlabeled data provide a promising new direction towards unsupervised learning.

- Co-Training, previously used for classifiers with 2/3 labels, was extended to the complex problem of statistical parsing.

- Parsing treated as providing structured (tree) labels with attachments computed between these labels.

- Evaluation of a unsupervised method for parsing directly comparable with supervised approaches.
Future Work

- Current Work: Improve parser (better smoothing); Better combination of the models.

- Experiment with using a larger labeled (1M words) and unlabeled set (23M words).

- Use machine learning for learning the tag dictionary:
 Thesis work: subcategorization frame learning, learning verb classes

- Conjecture: Active Learning and Co-Training can be combined into a single framework.