Lexicalized Tree-adjoining Grammar applied to Semantic Role Labeling

Anoop Sarkar
Simon Fraser University
Jun 8, 2008
(joint work with Yudong Liu and Libin Shen)
Semantic Role Labeling (SRL)

- For a given verb (predicate), SRL aims to identify and label all its arguments with semantic roles, such as Agent, Patient, and Theme.

 A0: seller

 [Ports of Call Inc.] reached agreements to sell [its remaining seven aircraft] [to buyers that weren't disclosed].

 A1: goods

 A2: buyer
SRL: two-phase task

• Argument identification:
 – If a portion of a sentence should be assigned a semantic role? (YES/NO)

• Argument classification:
 – If yes, what semantic role should be assigned to that portion? (Agent/Patient/Theme/…)

 [Ports of Call Inc.]seller reached agreements to sell [its remaining seven aircraft]goods [to buyers that weren't disclosed]buyer.
Feature Selection in SRL

- Argument identification:

Accurate SRL involves finding the right feature vector with a large classification margin.
Feature Selection in SRL (cont’d)

• Argument classification:

- Agent
- Non-agent
Current SRL systems

• High accuracy is achieved by:
 -- Proposing new types of *features* from different *syntactic views*: token-level, sentence level...
 -- Modeling the predicate frameset by *capturing* dependencies between arguments
 -- Dealing with incorrect parser output by *using more than one parser*

 -- syntactic chunks (Hacioglu et al., 2004)
 -- syntactic parses (Gildea and Jurafsky, 2002; Gildea and Palmer, 2002; Punyakanok et al., 2005)
 -- CCG derivations (Gildea and Hockenmaier, 2003; Toutanova et al., 2005; Punyakanok et al., 2005)
 -- dependency trees (Hacioglu et al., 2004)
 -- (Punyakanok et al., 2005; Pradhan et al., 2005)
Current SRL systems (cont’d)

- High accuracy is achieved by:
 - Proposing new types of features from different syntactic views: token-level, sentence level…
 - Modeling the predicate frameset by capturing dependencies between arguments
 - Dealing with incorrect parser output by using more than one parser (Punyakanok et al., 2005; Pradhan et al., 2005)
Source of features for SRL

from derived trees to derivation trees
Lexicalized Tree-Adjoining Grammar (LTAG)

parse tree

derivation tree

elementary trees
LTAG derivation trees for SRL (1)

• only \(\sim 87\% \) of dependencies between predicate and argument are captured (Chen and Rambow, 2003)
Sister-adjunction

In this work, paths in the derivation trees are also considered

F-score: 82.34% → 85.27%
LTAG derivations from TreeBanks or phrase-structure parses

S

NP-A

NP

NP

China

‘s

14

open

border

cities

marked

economic

achievements

VBD

NNS

JJ

JJS

NN
LTAG derivations from TreeBanks or phrase-structure parses

```
(S
  (NP-A
    (NP
      (NNP China)
      (POS 's)
      (CD 14)
      (JJ open)
      (NN border)
      (NNS cities)
      (VBD marked)
      (JJ economic)
      (NNS achievements)
  )
  (VP-H
    (NP
      (JJ marked)
      (NNS economic)
      (NNS achievements)
    )
  )
)
```
China's open border cities marked economic achievements
LTAG derivations from TreeBanks or phrase-structure parses

S
| NP
| NP
 | NNP POS CD JJ NN
 | China ‘s 14 open border cities marked economic achievements
| NP VP-H
 | NNS VBD JJ NNS
| t(marked)
 | t(cities) t(achievements)
 | t(‘s) t(14) t(open) t(border) t(economic)
| t(China)
Our research focus

• Propose new source of SRL features
 – From LTAG derivation trees
 – From different types of LTAG derivations

• Increase robustness of SRL to parser errors
The example revisited:

[seller *Ports of Call Inc.*] reached agreements to sell [goods *its remaining seven aircraft*] [buyer to buyers that weren't disclosed].
LTAG-based features

- **P**: Predicate elementary tree features
- **A**: Argument elementary tree features
- **I**: Intermediate elementary tree features
- **R**: Features capturing topological relations in LTAG derivation trees: distance between elementary trees, relative position, modifying relations
- **S**: Sub-categorization features
[seller *Ports of Call Inc.*] reached agreements to sell [goods *its remaining seven aircraft*] [buyer to buyers that weren't disclosed].
[seller *Ports of Call Inc.*] reached agreements to sell [goods *its remaining seven aircraft*] [buyer *to buyers that weren't disclosed*].
[seller *Ports of Call Inc.*] reached agreements to sell [goods *its remaining seven aircraft*] [buyer to buyers that weren't disclosed].

Category-I features for e4:
- relative position+
 - modifying relation: *left+modified*
- attachment point: *n/a*
- distance: 1 (e3)
Category-R features: topological relations between predicate etree and argument etree

[seller *Ports of Call Inc.*] reached agreements to sell [goods *its remaining seven aircraft*] [buyer to buyers that weren't disclosed].

Category-R features for e0:
- relative position+modifying relation: right+modifying
- attachment point: *e0*
- distance: 3 (directly connected)
[seller *Ports of Call Inc.*] reached agreements to sell [goods *its remaining seven aircraft*] [buyer *to buyers that weren't disclosed*].

- *e1* and *e2*: unordered in derivation trees
- Category-S feature:
 - for *e1*: position 0
 - for *e2*: position 1
Experimental setting

• Data:
 – PropBank is an annotated corpus with semantic roles
 – PropBank Section 02-21 for training; Section 23 for testing
 – PropBank Section 24 for feature calibration

• Argument Set Under Consideration:
 – \{A0, A1, A2, A3, A4, AM\}

• Machine learning model for identification & classification: support vector machine (SVM)
 – SVM-light (Joachims, 1999)
 – polynomial kernel with degree 3
 – 30% training data for parameter tuning

• Measures: precision/recall/F-score
Overall performance on Charniak’s parser

A combination of features proposed by (Gildea and Jurafsky, 2002), (Surdeanu et al., 2003; Pradhan et al., 2004; Pradhan et al., 2005) and (Xue and Palmer, 2004)
Feature calibration on the dev set (1)

P: predicate, A: argument, I: intermediate, R: topological, S: subcat
Feature calibration on the dev set (2)

F-score%

P: predicate, A: argument, I: intermediate, R: topological, S: subcat
What is the difference of using *subtrees provided by LTAG* and *all possible subtrees* as features?

Experimental result shows:

tree kernel based SRL v.s. LTAG feature based SRL

F-score: 83.53% → 85.25%
Experimental result

 - tree kernel over PAS + std
 - F-score: 85.25% v.s. 83.53%
 - *Statistically significant (using SIGF)*

- CoNLL-2005 shared task:
 - std v.s. std+ltag: 74.41% v.s. 75.31% (F-score)
Using LTAG-spinal Treebank for SRL

• To explore the impact of different types of LTAG derivation trees on the SRL task:
 – The LTAG derivation trees we used are converted from constituency parses.
 – LTAG-spinal treebank (Shen & Joshi, 2005a) was extracted from the TreeBank using PropBank; therefore appears more suitable for SRL.
 – LTAG-spinal parser (Shen & Joshi, 2005b) is now available.
 – LTAG-spinal was for syntax – we use it for SRL.
Patterns in Spinal-LTAG TreeBank:
P←A and P←Ax→Ay

Oracle test shows that 8 patterns account for 95.5% pred-arg pairs in TreeBank trees
Spinal-LTAG patterns
(Shen, Champollion, Joshi 2008)

1. P→A
 - (What)$_{arg1}$ will **happen** (to dividend growth)$_{arg2}$

2. P←A (relative clause, predicate adjunction)
 - (The amendment)$_{arg0}$ which **passed** today

3. P←Px→A (subject and object control)
 - (It)$_{arg0}$ plans to **seek** approval (Px = plans)

4. P←Coord→Px→A (shared arguments)
 - (Chrysotile fibers)$_{arg1}$ are curly and more easily **rejected** by the body (Px = are)
5. \(V \leftarrow A \) (modifier as predicate)
 - The Dutch \textbf{publishing (group)}\(_{\text{arg0}}\)

6. \(P \leftarrow Ax \leftarrow Py \rightarrow A \)
 - \((\text{Mike})_{\text{arg1}}\) has a letter to \textbf{send} \((Ax = \text{letter}, Py = \text{has})\)

7. \(P \leftarrow \text{Coord} \leftarrow Px \rightarrow A \) (control plus coordination)
 - \((\text{lt})_{\text{arg0}}\) expects to \textbf{obtain} regulatory approval and \textbf{complete} the transaction \((Px = \text{expects})\)

8. \(P \leftarrow Px \leftarrow Py \rightarrow A \) (chained control)
 - \((\text{Officials})_{\text{arg0}}\) began visiting about 26,000 cigarette stalls to \textbf{remove} illegal posters
Experimental results

<table>
<thead>
<tr>
<th>Scoring</th>
<th>LTAG-spinal (p/r/f%)</th>
<th>Phrase structure (p/r/f%)</th>
<th>CCG (p/r/f%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gold</td>
<td>automatic</td>
<td>gold</td>
</tr>
<tr>
<td>Root/head-word</td>
<td>90.6/83.4</td>
<td>81.0/71.5</td>
<td>87.2/88.4</td>
</tr>
<tr>
<td>based</td>
<td>86.9</td>
<td>76.0</td>
<td>87.8</td>
</tr>
<tr>
<td>Boundary</td>
<td>89.5/82.4</td>
<td>74.3/65.6</td>
<td>87.1/88.4</td>
</tr>
<tr>
<td>based</td>
<td>85.8</td>
<td>69.6</td>
<td>87.7</td>
</tr>
</tbody>
</table>

- CCG results from (Gildea and Hockenmaier, 2003)
- For gold parses:
 - $\text{precision}(\text{spinal}) > \text{precision}(\text{phrase_structure})$,
 - However, $\text{recall}(\text{spinal}) < \text{recall}(\text{phrase_structure})$.
- For automatic parses: same trend, larger gap between recall.
Accuracy Improvement

• Candidate selection strategy brings down the recall:
 – In automatic parses 8 patterns only capture 83.9% of pred-arg pairs (v.s. 95.5% in gold parses)
 – Increasing the recall is critical for further improvement
 – More candidates should be taken into account: all nodes along the predicate-root path should be considered.
Using Parse Forests for SRL

- A node that corresponds to the semantic argument exists in the i-th (i ≠ 1) tree in the top-N parses.
- Oracle test on WSJ Section 00 shows that 98.64% of the arguments (v.s. 98.65% in gold trees) can be captured when \(N = 100 \) in automatic parses.
An example: tree 2 is better than tree 1
Predicate-Argument kernel based method

- Predicate-argument kernel + sub-categorization frame
- Expectation: score(t_2) > score(t_1)
Inference based method

• Each prediction sequence is produced based on one parse in top-N parses.

sentence __
prediction sequence 1:
_________________________ ___________
prediction sequence 2:
_________________________ ___________
prediction sequence 3:
_________________________ ___________
...

...
Inference based method (cont’d)

- To produce the final single prediction, an inference procedure is given to maximize the objective function as follows (Punyakanok et al, 2005a):

\[
\hat{c}^{1:M} = \arg \max_{c^{1:M} \in L^M} \sum_{i=1}^{M} \text{Prob}(S^i = c^i),
\]

L is the argument set and argument sequence is indexed from 1 to M.

Probability of sentence portion i assigned semantic label c.
Inference based method (cont’d)

sentence

prediction sequence 1:

prediction sequence 2:

prediction sequence 3:

... ...

By inference, final output:
Summary

- LTAG based features can improve SRL accuracy.
- LTAG-spinal TreeBank combines PropBank information with TreeBank information to create LTAG derivation trees.
- LTAG-spinal TreeBank was used to build an SRL system.
- Parse forests can increase the robustness of SRL to parser errors.