Lexicalized Tree-adjoining Grammar applied to Semantic Role Labeling

Anoop Sarkar
Simon Fraser University
Jun 5, 2008
(joint work with Yudong Liu and Libin Shen)
Semantic Role Labeling (SRL)

- For a given verb (predicate), SRL aims to identify and label all its arguments with semantic roles, such as Agent, Patient, and Theme.

A0: seller

[Ports of Call Inc.] reached agreements to sell [its remaining seven aircraft] [to buyers that weren't disclosed].

A1: goods

A2: buyer
SRL: two-phase task

• Argument identification:
 – If a portion of a sentence should be assigned a semantic role? (YES/NO)

 \[\text{Ports of Call Inc.}\text{Y [reached]}\text{N [agreements]}\text{N [to]}\text{N sell [its remaining seven aircraft]}\text{Y [to buyers that weren't disclosed]}\text{Y}.\]

• Argument classification:
 – If yes, what semantic role should be assigned to that portion? (Agent/Patient/Theme/…)

 \[\text{Ports of Call Inc.}\text{seller reached agreements to sell [its remaining seven aircraft]goods [to buyers that weren't disclosed]}\text{buyer.}\]
Feature Selection in SRL

- Argument identification:

Accurate SRL involves finding the right feature vector with a large classification margin.
Feature Selection in SRL (cont’d)

• Argument classification:

```
[ S , NP ]
NP VP V
John

[ S , NP ]
NP VP V
play

[ S , NP ]
NP VP V
song

Agent
Non-agent
```
Current SRL systems

• High accuracy is achieved by:
 -- Proposing new types of *features* from different *syntactic views*: token-level, sentence level…
 -- Modeling the predicate frameset by *capturing dependencies between arguments*
 -- Dealing with incorrect parser output by *using more than one parser*
Current SRL systems (cont’d)

• High accuracy is achieved by:
 – Proposing new types of features from different syntactic views: token-level, sentence level…
 – Modeling the predicate frameset by capturing dependencies between arguments
 – Dealing with incorrect parser output by using more than one parser (Punyakanok et al., 2005; Pradhan et al., 2005)
Source of features for SRL

[Ports of Call Inc.] reached agreements to sell [its remaining seven aircraft] [to buyers that weren't disclosed].

from derived trees to derivation trees
LTAG derivation trees for SRL (1)

- only approximately 87% of dependencies between predicate and argument are captured (Chen and Rambow, 2003)
LTAG derivation trees for SRL (2)

- Sister-adjunction
- In this work, paths in the derivation trees are also considered
 F-score: 82.34% → 85.27%
LTAG derivations from TreeBanks or phrase-structure parses

S

NP-A

VP-H

NP

NP

China

‘s

14

open

border

cities

marked

economic

achievements
LTAG derivations from TreeBanks or phrase-structure parses

S
NP-A
NP-A
NP
NP
NP
VBD
JJ
NNS
NNS

China
‘s
14
open
border
cities
marked
economic
achievements
China's open border cities marked economic achievements

LTAG derivations from TreeBanks or phrase-structure parses
LTAG derivations from TreeBanks or phrase-structure parses
Our research focus

• Propose new source of SRL features
 – From LTAG derivation trees
 – From different types of LTAG derivations

• Increase robustness of SRL to parser errors
The example revisited:

[seller *Ports of Call Inc.*] reached agreements to sell [goods *its remaining seven aircraft*] [buyer to buyers that weren't disclosed].

```
NP                    VP-H
|                      |
| NP                  | NNP-H   |
|                      |
| Inc.            | VBD-H   |
| reached            | NNS-H   |
| agreements         | S       |
| VP-H               | TO-H    |
| sell               | NN-H    |
| to                 | TO-H    |
| aircraft           | NP      |
| to                 | PP      |
| NNS-H              |          |
| to                 |          |
| buyers             |          |
```

```
e0:VP
   |       |
   VB    NN
   sell  TO
   aircraft  to
   TO  to

e1:NP
   NNS
   VBD
   reached  Inc.

e2:PP
   VP
   e5: S
   agreements
   reached
   Inc.

e3: S
   e4:NP
   VBD
   NNS
   agreements
   reached
   Inc.

e4:agreements
   e6: NP
   Inc.

e5: reached

e6: Inc.
   e4:agreements
   e0: sell
   e1: aircraft
   e2: to
```
LTAG-based features

• P: Predicate elementary tree features
• A: Argument elementary tree features
• I: Intermediate elementary tree features
• R: Features capturing topological relations in LTAG derivation trees: *distance between elementary trees, relative position, modifying relations*
• S: Sub-categorization features
[seller *Ports of Call Inc.*] reached agreements to sell [goods *its remaining seven aircraft*] [buyer to buyers that weren't disclosed].
Ports of Call Inc. reached agreements to sell its remaining seven aircraft to buyers that weren't disclosed.

Category-A features for el:

- el: NP
- el-v1: NP
- el-v2: NP
- el-v3: NP

- NN aircraft
- NE-label if any
[seller *Ports of Call Inc.*] reached agreements to sell [goods *its remaining seven aircraft*] [buyer *to buyers that weren't disclosed*].

Category-I features: intermediate e-tree related features

- **e4:**
 - relative position:
 - modifying relation: *left* + *modified*
 - attachment point: *n/a*
 - distance: *1 (e3)*
Category-R features: topological relations between predicate etree and argument etree

[seller *Ports of Call Inc.*] reached agreements to sell [goods *its remaining seven aircraft*] [buyer to buyers that weren't disclosed].

Category-R features for *e1*:

- relative position+modifying relation: *right+modifying*
- attachment point: *VP*
- distance: *0 (directly connected)*)
[seller *Ports of Call Inc.*] reached agreements to **sell** [goods *its remaining seven aircraft*] [buyer *to buyers that weren't disclosed*].
Experimental setting

• Data:
 – PropBank is an annotated corpus with semantic roles
 – PropBank Section 02-21 for training; Section 23 for testing
 – PropBank Section 24 for feature calibration

• Argument Set Under Consideration:
 – \{A0, A1, A2, A3, A4, AM\}

• Machine learning model for identification & classification: support vector machine (SVM)
 – SVM-light (Joachims, 1999)
 – polynomial kernel with degree 3
 – 30% training data for parameter tuning

• Measures: precision/recall/F-score
Overall performance on Charniak’s parser

A combination of features proposed by (Gildea and Jurafsky, 2002), (Surdeanu et al., 2003; Pradhan et al., 2004; Pradhan et al., 2005) and (Xue and Palmer, 2004).
Feature calibration on the dev set (1)

P: predicate, A: argument, I: intermediate, R: topological, S: subcat

<table>
<thead>
<tr>
<th>Feature</th>
<th>F-score%</th>
</tr>
</thead>
<tbody>
<tr>
<td>full</td>
<td>88.8</td>
</tr>
<tr>
<td>full\P</td>
<td>89.2</td>
</tr>
<tr>
<td>full\R</td>
<td>89.6</td>
</tr>
<tr>
<td>full\S</td>
<td>90.0</td>
</tr>
<tr>
<td>full\A</td>
<td>90.4</td>
</tr>
<tr>
<td>full\I</td>
<td>90.8</td>
</tr>
<tr>
<td>std</td>
<td>88.8</td>
</tr>
</tbody>
</table>
Feature calibration on the dev set (2)

P: predicate, A: argument, I: intermediate, R: topological, S: subcat
Tree kernel v.s. LTAG

What is the difference of using *subtrees provided by LTAG* and *all possible subtrees* as features?

Experimental result shows:
tree kernel based SRL v.s. LTAG feature based SRL

F-score: 83.53% \rightarrow 85.25%
Experimental result

• LTAG-based features v.s. Predicate-Argument Structure features (Moschitti, 2004):
 • tree kernel over PAS + std
 • F-score: 85.25% v.s. 83.53%
 Statistically significant (using SIGF)

• CoNLL-2005 shared task:
 • std v.s. std+ltag: 74.41% v.s. 75.31% (F-score)
Using LTAG-spinal Treebank for SRL

• To explore the impact of different types of LTAG derivation trees on the SRL task:
 – The LTAG derivation trees we used are converted from constituency parses.
 – LTAG-spinal treebank (Shen & Joshi, 2005a) was extracted from the TreeBank using PropBank; therefore appears more suitable for SRL.
 – LTAG-spinal parser (Shen & Joshi, 2005b) is now available.
 – LTAG-spinal was for syntax – we use it for SRL.
Patterns in Spinal-LTAG TreeBank:
\[P \leftarrow A \text{ and } P \leftarrow Ax \rightarrow Ay \]

Oracle test shows that 8 patterns account for 95.5% pred-arg pairs in TreeBank trees
Spinal-LTAG patterns
(Shen, Champollion, Joshi 2008)

1. P→A
 - (What)\textsubscript{arg1} will \textbf{happen} (to dividend growth)\textsubscript{arg2}

2. P←A (relative clause, predicate adjunction)
 - (The amendment)\textsubscript{arg0} which \textbf{passed} today

3. P←Px→A (subject and object control)
 - (It)\textsubscript{arg0} plans to \textbf{seek} approval (Px = plans)

4. P←Coord→Px→A (shared arguments)
 - (Chrysotile fibers)\textsubscript{arg1} are curly and more easily \textbf{rejected} by
 the body (Px = are)
Spinal-LTAG patterns
(Shen, Champollion, Joshi 2008)

5. V←A (modifier as predicate)
 – The Dutch publishing (group)\text{arg}_0

6. P←Ax←Py→A
 – (Mike)\text{arg}_1 has a letter to send (Ax = letter, Py = has)

7. P←Coord←Px→A (control plus coordination)
 – (It)\text{arg}_0 expects to obtain regulatory approval and complete
 the transaction (Px = expects)

8. P←Px←Py→A (chained control)
 – (Officials)\text{arg}_0 began visiting about 26,000 cigarette stalls to
 remove illegal posters
Experimental results

<table>
<thead>
<tr>
<th></th>
<th>LTAG-spinal (p/r/f%)</th>
<th>Phrase structure (p/r/f%)</th>
<th>CCG (p/r/f%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gold</td>
<td>automatic</td>
<td>gold</td>
</tr>
<tr>
<td>Root/head-word based</td>
<td>90.6/83.4</td>
<td>81.0/71.5</td>
<td>87.2/88.4</td>
</tr>
<tr>
<td></td>
<td>86.9</td>
<td>76.0</td>
<td>87.8</td>
</tr>
<tr>
<td>Boundary based</td>
<td>89.5/82.4</td>
<td>74.3/65.6</td>
<td>87.1/88.4</td>
</tr>
<tr>
<td></td>
<td>85.8</td>
<td>69.6</td>
<td>87.7</td>
</tr>
</tbody>
</table>

- CCG results from (Gildea and Hockenmaier, 2003)
- For gold parses:
 - $\text{precision}(\text{spinal}) > \text{precision}(\text{phrase_structure})$,
 - However, $\text{recall}(\text{spinal}) < \text{recall}(\text{phase_structure})$.
- For automatic parses: same trend, larger gap between recall.
Accuracy Improvement

• Candidate selection strategy brings down the recall:
 – In automatic parses 8 patterns only capture 83.9% of pred-arg pairs (v.s. 95.5% in gold parses)
 – Increasing the recall is critical for further improvement
 – More candidates should be taken into account: all nodes along the predicate-root path should be considered.
Using Parse Forests for SRL

• A node that corresponds to the semantic argument exists in the i-th (i≠1) tree in the top-N parses.

• Oracle test on WSJ Section 0 shows that 98.64% of the arguments (v.s. 98.65% in gold trees) can be captured when N = 100 in automatic parses.
An example: tree 2 is better than tree 1
Predicate-Argument kernel based method

- Predicate-argument kernel + sub-categorization frame
- Expectation: score(t2) > score(t1)
Inference based method

• Each prediction sequence is produced based on one parse in top-N parses.

sentence

prediction sequence 1:

prediction sequence 2:

prediction sequence 3:

... ...
Inference based method (cont’d)

• To produce the final single prediction, an inference procedure is given to maximize the objective function as follows (Punyakanok et al, 2005a):

\[\hat{c}^{1:M} = \arg\max_{c^{1:M} \in L^M} \sum_{i=1}^{M} \text{Prob}(S^i = c^i), \]

- \(L \) is the argument set and argument sequence is indexed from 1 to \(M \)
- Probability of sentence portion \(i \) assigned semantic label \(c \)
Inference based method (cont’d)

sentence

prediction sequence 1:

prediction sequence 2:

prediction sequence 3:

... ...

By inference, final output:
Summary

• LTAG based features can improve SRL accuracy.
• LTAG-spinal Treebank combines PropBank information with TreeBank information to create LTAG derivation trees.
• LTAG-spinal TreeBank was used to build an SRL system.
• Parse forests can increase the robustness of SRL to parser errors.