Semi-supervised learning for statistical machine translation

Anoop Sarkar
(joint work with Gholamreza Haffari)
{anoop,gholamreza_haffari}@cs.sfu.ca

School of Computing Science
Simon Fraser University
Vancouver, Canada

http://natlang.cs.sfu.ca/

December 9, 2006
1. The task: statistical machine translation
 - The baseline SMT system
 - The hypothesis

2. Previous work in semi-supervised learning for SMT

3. Our approach: Yarowsky algorithm applied to SMT

4. Experiments
 - Inductive vs. Transductive
 - Experimental Setup
 - Experiments
1. The task: statistical machine translation
 - The baseline SMT system
 - The hypothesis

2. Previous work in semi-supervised learning for SMT

3. Our approach: Yarowsky algorithm applied to SMT

4. Experiments
 - Inductive vs. Transductive
 - Experimental Setup
 - Experiments
Phrase-based SMT: Train

- Input to training: a set of aligned sentences, $\bigcup_i \{f_i, e_i\}$.
- First step in training: train a generative alignment model using EM (unsupervised learning) in both directions: $f \rightarrow e$ and $e \rightarrow f$,
- Second step: produce Viterbi alignments for $f \rightarrow e$ and $e \rightarrow f$,
- Third step: Extract all phrase pairs upto a fixed length and estimate models for phrasal alignment,
- Fourth step: Discriminative training of $\Pr_{\lambda^M}(e | f)$, a log linear combination of M models including various phrasal alignment models, a target language model feature $\Pr(e)$ and others.
Training provides a log-linear model $\Pr_{\lambda_1}^{M}(e \mid f)$.

Decode the test data f: $e^* = \arg\max_e \{ \Pr_{\lambda_1}^{M}(e \mid f) \}$

For each test data sentence, evaluate against 4 – 10 human translations for that sentence.

Bleu-4 score: weighted combination of up to 4-gram precision scores and a brevity penalty, $\text{Bleu} = bp \cdot \exp \left(\sum_{n=1}^{N} \frac{\log p_n}{N} \right)$

Baseline system

- Implementation = \text{GIZA}++, \text{SRI-LM} and \text{MOSES};
- Dataset = EuroParl corpus from SMT shared task 2006.
- With 25000 sent pairs in training, $\text{Bleu} = 20.9$;
- With 50000 sent pairs, $\text{Bleu} = 22.6$
Improving quality of output translations

- The SMT system:

\[e^* = \arg\max_e \left\{ Pr_{\lambda_1 M}(e | f) \right\} \]

- Estimates for the target language model \(Pr(e) \) can be improved by adding large amounts of target \(e \) text.

- In practice, adding more target \(e \) text has been shown to improve translation quality considerably.

- Our hypothesis: adding more source \(f \) text can also provide improvements.
 - Unlike adding target \(e \) text, this hypothesis is a natural semi-supervised learning (SSL) problem.
 - We need translations for the additional source \(f \) text before they can be useful in SMT.
French input:

j’en viens maintenant l’autre point faible: le soutien de l’opinion publique, l’intérieur et l’extérieur de l’union européenne.

With 2000 English-French parallel text we get English output:

i have just said to be another point: the support of the public opinion to the internal and medicines completely dependent on the outside the european union. faible now in

Using only additional monolingual French text we get:

i come now to another weak point: the support of the public, inside and outside the european union.
1. The task: statistical machine translation
 - The baseline SMT system
 - The hypothesis

2. Previous work in semi-supervised learning for SMT

3. Our approach: Yarowsky algorithm applied to SMT

4. Experiments
 - Inductive vs. Transductive
 - Experimental Setup
 - Experiments
SSL for word alignment (Callison-Burch et al, 2004)

- Model IBM-M4: generative model for word alignment extracted using unsupervised learning on parallel text.
- Model SUP: model trained on small amount of hand annotated word alignment data.
- Mixture model provides a probability for word alignment using: $\lambda \text{SUP} + (1 - \lambda) \text{IBM-M4}$
- Experiments show $\lambda = 0.9$ performed best (large weight on labeled data).
- However, word alignment does not equal translation quality.
EM is used to train a generative model of word alignment from a large parallel text. The generative model is decomposed into several sub-models using independence assumptions.

Each sub-model can be used in a log linear model for word alignment. The weights for the log linear model are trained on a small set of hand aligned sentences.

Iteratively alternate between approximate EM (Neal and Hinton, 1998) and gradient descent for log linear model until error rate on a held out set is minimized.

Predicted Viterbi word alignments are used to train a phrase-based SMT system.

Arabic-English, Bleu\%: 49.16 ⇒ 50.84; French-English, Bleu\%: 30.63 ⇒ 31.56.
Consider source languages a, b, c, d which all translate into target language e.

In addition, a, b, c, d are sentence aligned with each other.

If a sentence in c is found to be accurately translated into sentence in e, then the corresponding aligned sentences in a, b and d now have new labeled parallel text, e.g. d → c → e.

One language pair creates data for another language pair and can be naturally used in a (Blum and Mitchell, 1998) style co-training algorithm.

Experiments on the EuroParl corpus show word error rate improvement of 2.5% for German-English (other pairs had lower WER).

When run long enough, large amounts of co-trained data injected too much noise and performance degraded.
In this workshop!

- Run a log linear phrase-based SMT decoder on source text.
- Use word alignments in newly labeled parallel text to extract new phrase pairs,
- Augment the log linear model with new feature functions based on phrasal alignments from newly labeled source text.
- This results in a new SMT system that exploits phrase pairs from unlabeled data.
1. The task: statistical machine translation
 - The baseline SMT system
 - The hypothesis

2. Previous work in semi-supervised learning for SMT

3. Our approach: Yarowsky algorithm applied to SMT

4. Experiments
 - Inductive vs. Transductive
 - Experimental Setup
 - Experiments
The Yarowsky algorithm: classifier version

- Input: each example x is either labeled $L(x)$ in some annotated data, or unlabeled as $U^0(x) := \bot$.

- Input: function train that provides θ for classifier $\pi = \Pr(j \mid x, \theta)$ from labeled training data.

- For $t \in \{0, 1, \ldots\}$:
 - Training step: $\text{train} \pi^{(t+1)}$ using L and U^t.
 - For each example x:
 - Labeling step: $\hat{y} = \text{argmax}_{j \in \mathcal{L}} \pi_x^{(t+1)}(j)$
 - Selection step:
 $$U^{(t+1)}(x) = \begin{cases} \hat{y} & \text{if } U^{(t)}(x) \neq \bot \text{ or } \pi_x^{(t+1)}(\hat{y}) > \text{threshold } \zeta \\ \bot & \text{otherwise} \end{cases}$$

- For all x: if $U^{(t+1)}(x) = U^{(t)}(x)$ then stop.
Analysis of the Yarowsky algorithm (Abney 2004)

Definition

Prediction distribution: \(\pi_x(j) \)

\[
\pi_x(j) = \Pr(j \mid x, \theta)
\]

with model parameters \(\theta \)

Definition

Empirical labeling distribution: \(\phi_x(j) \)

- For labeled example \(x \) and label \(j \in \mathcal{L} \):

\[
\phi_x(j) = \begin{cases}
1 & \text{if } j \text{ the label of } x \\
0 & \text{otherwise}
\end{cases}
\]

- For unlabeled example \(x \): \(\phi_x(j) = \frac{1}{|\mathcal{L}|} \) (\(\phi_x \) is uniform)
Minimum threshold $\zeta = \frac{1}{|L|}$.

Each example x in U once labeled remains labeled but label can change.

The algorithm produces a sequence of labelings: $\phi^{(0)}, \phi^{(1)}, \ldots$

And it produces a sequence of classifiers (model parameters): $\pi^{(1)}, \pi^{(2)}, \ldots$

Classifier $\pi^{(t+1)}$ is trained on the labeling $\phi^{(t)}$.

Labeling $\phi^{(t+1)}$ is created using $\pi^{(t+1)}$.

Assuming that

$$\sum_x D(\phi_x^{(t)} || \pi_x^{(t+1)}) - \sum_x D(\phi_x^{(t)} || \pi_x^{(t)}) \leq 0$$

(Abney, 2004) shows that H is the objective function:

$$H = \sum_x H(\phi_x) + D(\phi_x || \pi_x)$$
Machine translation is very different from classification.

Consider an unlabeled instance f: there are many candidate e sentences that could lead to the same Bleu score.

We want to use the labeling distribution ϕ_f to separate a large number of good translations from a large number of bad translations.

\Rightarrow Intuition from the splitting and uneven margin ideas from (Shen, Sarkar, Och, 2003) and (Shen and Joshi, 2005)

We modify the classifier-based Yarowsky algorithm to use a SMT system.

We use importance sampling to collect all useful translations (possibly sampling multiple translations even for the same source f sentence).
MT-Yarowsky: SSL for machine translation

- **Input**: training set L of parallel sentence pairs.
- **Input**: unlabeled set U of source f text.
- Set the pool of training data T to L; $t := 0$.
- **repeat**
 - **Training step**: estimate $\pi(t) = Pr_{\lambda M}(e | f)$ from T.
 - Reset training data: $T = L$; Set $X = \{\}$. X will be the set of *confident* translations for this iteration.
 - **Labeling step**: for each sentence $f \in U$:
 - Decode f using $\pi(t)$ to obtain n-best sentence pairs: $X = X \cup \{(e, f)\}^n$ with scores $\{\pi_f^{(t)}(e)\}^n$.
 - For $(e, f) \in X$, $\pi'(e) = \left(\pi_f^{(t)}(e)\right)^{\frac{1}{|e|}}$ (length normalized)
 - Importance sampling to get k sentence pairs: $\{(e, f)\}^k \sim \pi'(e)$
 - Add $\{(e, f)\}^k$ to T; $t := t + 1$.
- **until** labeling distribution $\phi_f(\cdot)$ converges
MT-Yarowsky: SSL for machine translation

\[T, f_j, f_{j'} \]

\[e_i, \text{smoothing} \]

\[e_{i'}, \text{uniform} \]
The task: statistical machine translation
- The baseline SMT system
- The hypothesis

Previous work in semi-supervised learning for SMT

Our approach: Yarowsky algorithm applied to SMT

Experiments
- Inductive vs. Transductive
- Experimental Setup
- Experiments
Inductive vs. Transductive

- **Transductive**: produce a label only for the available unlabeled data.
 - The output is not a classifier that can be applied to new data.
 - Typically, semi-supervised learning is performed on the test data.

- **Inductive**: Not only produce label for unlabeled data, but also produce a classifier.

- Analogy from (Zhu, 2005):
 - Transductive learning: take-home exam.
 - Inductive learning: in-class exam.
However a transductive SVM is an inductive learner! A TSVM can be naturally used on unseen data.

However, the name TSVM originates from the following argument from (Vapnik, 1998):

- Learning on the entire data space is solving a more difficult problem.
- If the task is to annotate the test data, the only work on the observed data (L+T): solve a simpler problem first!

TSVM can be seen as an alternative way to do supervised learning:
TSVM can be seen as an alternative way to do supervised learning:

- Advantages: getting around the i.i.d. assumption by learning a classifier geared towards each test case (or all test cases considered together)
- For example, in digit recognition, transduction can leverage information in the test data in cases where the test data is all written by the same person.
- Generative model approach in (Hinton and Nair, 2005).

In the case of machine translation, transductive learning would be able to adapt to test data from a different domain.
Experimental settings

- Dataset = EuroParl corpus from SMT shared task 2006.
- With 25000 sent pairs in training, $\text{Bleu} = 20.9$;
- With 50000 sent pairs in training, $\text{Bleu} = 22.6$
- Labeled data set L: 25000 sent pairs.
- Unlabeled data set $U = \text{Test set} = 500$ sentences (transductive learning)
- Expensive decoding of different test and unlabeled data in each bootstrapping iteration is avoided in the transductive setting.
- No reference translations for test set were used for SSL.
- n-best translations: $n = 21$ and $n = 2$.
- Sample size per iteration $k = 500$.
 Note that the same source sentence could contribute multiple target sentences in each iteration.
MT-Yarowsky: Experiment 1

Training, Test, Randomly chosen sent, nbest = (25000, 500, 500, 2)
Summary

- Error rate is more stable when sampling from n-best list.
- Transductive learning with MT-Yarowsky provides an improvement in the Bleu score is almost equivalent to doubling the training data from 25000 to 50000.

 \[
 \text{double training data: } 20.9 \Rightarrow 22.6 \\
 \text{MT-Yarowsky SSL: } 20.9 \Rightarrow 22.3 \\
 \]

- Moving from transductive to inductive learning: avoid re-training full model in the Training step.

- Instead, create a mixture model of phrase pair probabilities from unlabeled data with static phrase probabilities from training data.

- Extension to large data track SMT.