Applying Co-Training Methods to Statistical Parsing

Anoop Sarkar
http://www.cis.upenn.edu/~anoop/
anoop@linc.cis.upenn.edu
the company’s clinical trials of both its animal and human-based insulins indicated no difference in the level of hypoglycemia between users of either product
Bilexical CFG (History-based parsers)

```
S
  ..
  VP{indicated}
    VB{indicated} NP{difference} PP{in}
      indicated difference in NP

```
Bilexical CFG: VP\{indicate\} → VB\{+H:indicate\} NP\{difference\} PP\{in\}
Independence Assumptions (Collins 99)

2.23%

```
 VP
  ..
  VP
   VB NP PP
```

0.06%

```
 VP
  ..
  VP
   VB NP
   PP
```

60.8%

```
 VP
   VB NP
```

0.7%

```
 VP
   VB PP NP
```
Tree Adjoining Grammars: Different Modeling of Bilexical Dependencies

The store bought IBM last week.
Probabilistic TAGs: Substitution

\[\sum_{t'} P(t, \eta \rightarrow t') = 1 \]
Probabilistic TAGs: Adjunction

\[\mathcal{P}(t, \eta \to NA) + \sum_{t'} \mathcal{P}(t, \eta \to t') = 1 \]
Tree Adjoining Grammars

- Simple and well-defined model for parsing. (Schabes 92, Resnik 92, Sarkar 98)
 Performance (Chiang 2000): 86.9% LR 86.6% LP (≤ 40 words)

- Locality and independence assumptions are captured elegantly.

- Parsing can be treated in two steps (Srinivas 97):
 1. Classification: structured labels (elementary trees) are assigned to each word in the sentence.
 2. Attachment: Apply substitution or adjunction to combine the elementary trees to form the parse.
Training a Statistical Parser

- How should the parameters (e.g., rule probabilities) be chosen?

- Several alternatives:
 - EM algorithm: Inside-Outside Algorithm (Schabes 92; Hwa 98)
 - Supervised training from a Treebank (Chiang 2000)
 - Parsing as Classification. Explore new machine learning techniques.
 - Achieving higher performance when using limited amounts of annotated data.
 - Conditional independence of features in the data. Can we exploit this...
Statistical Parsing: Supervised vs. Unsupervised Methods

- “Stone soup” approaches to unsupervised learning of parsers cannot handle structurally rich parses found in the Penn Treebank. (Lafferty et al 92; Della Pietra et al 94; de Marcken 95)

- A feasible technique: Combining Labeled and Unlabeled Data
 - Active Learning: Bet on which examples are the hardest. (and annotate them) (Hwa 2000)
 - Co-Training: Bet on which examples can be handled with high confidence. (use as labeled data)
Case Study in Unsupervised Methods: POS Tagging

- POS Tagging: finding categories for words

- … the stocks \textit{rose}/V … vs. … a \textit{rose}/N bouquet …

- Tag dictionary: \textit{rose}: \textit{N}, \textit{V}
 and nothing else
Case Study: Unsupervised POS Tagging

- (Cutting et al. 92) The Xerox Tagger: used HMMs with hand-built tag dictionaries. High performance: 96% on Brown

- (Merialdo 94; Elworthy 94) used varying amounts of labeled data as seed information for training HMMs. Conclusion: HMMs do not effectively combine labeled and unlabeled data

- (Brill 97) aggressively used tag dictionaries taken from labeled data to train an unsupervised POS tagger. c.f. text classification results Performance: 95% on WSJ. Approach does not easily extend to parsing: no notion of tag dictionary.
Co-Training (Blum and Mitchell 98; Yarowsky 95)

- Pick two “views” of a classification problem.

- Build separate models for each of these “views” and train each model on a small set of labeled data.

- Sample an unlabeled data set and to find examples that each model independently labels with high confidence. (Nigam and Ghani 2000)

- Pick confidently labeled examples. (Collins and Singer 99; Goldman and Zhou 2000); Active Learning

- Each model labels examples for the other in each iteration.
Pierre Vinken will join the board as a non-executive director
Recursion in Parse Trees

- Usual decomposition of parse trees:

 \[S(\text{join}) \rightarrow \text{NP(Vinken)} \ \text{VP(join)} \]

 \[\text{NP(Vinken)} \rightarrow \text{Pierre Vinken} \]

 \[\text{VP(join)} \rightarrow \text{will VP(join)} \]

 \[\text{VP(join)} \rightarrow \text{join NP(board) PP(as)} \]

 \[\ldots \]
Parsing as Tree Classification and Attachment: (Srinivas 97; Xia 2000)

Model H1: \(P(T_i \mid T_{i-2}T_{i-1}) \times P(w_i \mid T_i) \)
Parsing as Tree Classification and Attachment

Model H2: \(P(\text{TOP} = w, T) \times \Pi_i P(w_i, T_i \mid \eta, w, T) \)
The Co-Training Algorithm

1. Input: labeled and unlabeled

2. Update cache
 - Randomly select sentences from unlabeled and refill cache
 - If cache is empty; exit

3. Train models H1 and H2 using labeled

4. Apply H1 and H2 to cache.

5. Pick most probable \(n \) from H1 (run through H2) and add to labeled.

6. Pick most probable \(n \) from H2 and add to labeled

7. \(n = n + k \); Go to Step ??
Results

- *labeled* was set to Sections 02-06 of the Penn Treebank WSJ (9625 sentences)

- *unlabeled* was 30137 sentences (Section 07-21 of the Treebank stripped of all annotations).

- A tree dictionary of all lexicalized trees from *labeled* and *unlabeled*. Similar to the approach of (Brill 97)
 Novel trees were treated as unknown tree tokens

- The *cache* size was 3000 sentences.
Results

- Test set: Section 23

- Baseline Model was trained only on the *labeled* set: and Labeled Bracketing Precision = 72.23% Recall = 69.12%

- After 12 iterations of Co-Training: Labeled Bracketing Precision = 80.02% Recall = 79.64%
Summary

- Methods that combine labeled and unlabeled data provide a promising new direction towards unsupervised learning.

- Co-Training, previously used for classifiers with 2/3 labels, was extended to the complex problem of statistical parsing.

- Parsing treated as providing structured (tree) labels with attachments computed between these labels.

- Evaluation of a unsupervised method for parsing directly comparable with supervised approaches.
Current Work

- Still needs human supervision to create the tree dictionary. For small datasets, this is unavoidable.

- Another application: use a large labeled dataset. But improve performance using a much larger unlabeled dataset.

- Current expt: 1M words labeled and 23M words unlabeled. Tree dictionary is completely defined by the labeled set.

- Investigating the relationship between Co-Training and EM.
Co-Training and EM

<table>
<thead>
<tr>
<th>max output of a generative model</th>
<th>gradient descent over unlabeled</th>
<th>iterative selection from unlabeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>select new examples independently</td>
<td>EM</td>
<td>co-EM*</td>
</tr>
<tr>
<td></td>
<td>Discriminative Objective Function</td>
<td>Co-Training</td>
</tr>
</tbody>
</table>

* (Nigam and Ghani, 2000)